Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Hot nickel nudges graphene: Rice University lab simplifies manufacture of semiconducting bilayer graphene

This graphic shows the process of creating bilayer graphene on an insulating substrate, skipping the need to transfer graphene from a metal catalyst. The final image, captured with an electron microscope, clearly shows two layers of graphene produced via the process.
 (Credit Tour Lab/Rice University)
This graphic shows the process of creating bilayer graphene on an insulating substrate, skipping the need to transfer graphene from a metal catalyst. The final image, captured with an electron microscope, clearly shows two layers of graphene produced via the process.

(Credit Tour Lab/Rice University)

Abstract:
By heating metal to make graphene, Rice University researchers may warm the hearts of high-tech electronics manufacturers.

Hot nickel nudges graphene: Rice University lab simplifies manufacture of semiconducting bilayer graphene

Houston, TX | Posted on September 15th, 2011

The lab of Rice chemist James Tour published two papers this month that advance the science of making high-quality, bilayer graphene. They show how to grow it on a functional substrate by first having it diffuse into a layer of nickel.

Graphene is commonly grown on a metal catalyst, usually copper, and must be transferred to an electrically insulating substrate like silicon dioxide before it can be used in a circuit. The transfer process is cumbersome and time-consuming and can be as frustrating as manipulating household plastic wrap, Tour said.

The new processes outlined in two related ACS Nano papers (here and here) show large-scale bilayer graphene can be grown directly onto a variety of insulating substrates. They eliminate the transfer process and facilitate the growth of large sheets of semiconducting graphene ready for incorporation into patterned transistors, Tour said.

"The ability to grow bilayer graphene directly onto an insulator can permit electronic device manufacturers to build transistors without the industrially burdensome step of placing one sheet of graphene upon another," said Tour, Rice's T.T. and W.F. Chao Chair in Chemistry as well as a professor of mechanical engineering and materials science and of computer science.

Graphene, the single-atom-thick form of carbon, has been the subject of much study since its discovery in 2004. Tour's lab has become a major player in graphene research by publishing in recent years papers on unzipping nanotubes into graphene nanoribbons, characterizing its electrical properties through lithography, creating transparent electrodes for touch screens and making graphene from a variety of cheap sources, even Girl Scout cookies. All aim to cut the cost and complexity of making graphene and bring it into widespread use.

A single layer of graphene, which at the atomic scale looks like chicken wire, is a semimetal and has no bandgap; this makes it unsuitable for many electronic applications. But bilayer graphene is a semiconductor. Its properties depend upon the offset or rotation of the layers in relation to each other and it is tunable using an electric field applied across the layers.

The new processes depend on the solubility of carbon atoms in hot nickel. In one study, a group led by graduate student Zhiwei Peng evaporated a coat of nickel onto silicon dioxide and placed a polymer film -- the carbon source -- on top.

Heating the sandwich to 1,000 degrees Celsius in the presence of flowing argon and hydrogen gas allowed the polymer to diffuse into the metal; upon cooling, graphene formed on the nickel and on the silicon dioxide surfaces. When the nickel and incidental graphene that formed on top were etched away, bilayer graphene was left attached to the silicon dioxide substrate.

In the other study, graduate student Zheng Yan shuffled the sandwich. He topped a layer of silicon dioxide with a sliver of one of a variety of polymers and then put the nickel on top. Again, under high temperature and low pressure, bilayer graphene formed between the silicon dioxide and nickel. Experimentation with other substances revealed that bilayer graphene would also form on hexagonal boron nitride, silicon nitride and sapphire.

"This type of process eliminates the need for roll-to-roll transfer of the graphene to an electronic substrate, because bilayer graphene can now be grown directly upon the substrate of interest," Tour said.

Authors of the first paper, "Growth of Bilayer Graphene on Insulating Substrates," are Yan, Peng, graduate student Zhengzong Sun, former graduate student Jun Yao, postdoctoral research associates Yu Zhu and Zheng Liu, Tour and Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science and of chemistry.

The Office of Naval Research MURI program, Lockheed Martin and the Air Force Office of Scientific Research supported the research.

Authors of the second paper, "Direct Growth of Bilayer Graphene on SiO2 Substrates by Carbon Diffusion Through Nickel," are Peng, Yan, Sun and Tour.

The Office of Naval Research MURI program, the Air Force Research Laboratory through United Technology Corp., the Air Force Office of Scientific Research and M-I SWACO supported the research.

####

About Rice University
Located on a 285-acre forested campus in Houston, Texas, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its “unconventional wisdom." With 3,485 undergraduates and 2,275 graduate students, Rice's undergraduate student-to-faculty ratio is less than 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to www.rice.edu/nationalmedia/Rice.pdf.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

ABSTRACT - Growth of Bilayer Graphene on Insulating Substrates:

ABSTRACT - Direct Growth of Bilayer Graphene on SiO2 Substrates by Carbon Diffusion Through Nickel:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Graphene/ Graphite

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project