Home > Press > Optofluidics could change energy field, say engineers
Cellana A bioreactor with an open pond like this one, which uses photosynthesis to make fuels, could be improved with the use of optofluidic technologies. |
Abstract:
The ability to manipulate light and fluids on a single chip, broadly called "optofluidics," has led to such technologies as liquid-crystal displays and liquid-filled optical fibers for fast data transfer. Optofluidics is now also on the cusp of improving such green technologies as solar-powered bioreactors, say Cornell researchers.
The biggest challenge, says Cornell's David Erickson, associate professor of mechanical and aerospace engineering, is how to upscale optofluidic chips, which are built at nanometer scales, to deliver enough energy to make a difference. These challenges and opportunities are detailed in a Nature Photonics Review article by Erickson and two colleagues, published online Sept. 11.
"Over the last five years or so, we have developed many new technologies to precisely deliver light and fluids and biology to the same place at the same time," Erickson said. "It's these new tools that we want to apply to the area of energy."
For example, photobioreactors are large-scale systems that use microorganisms such as algae or cyanobacteria, to convert light and carbon dioxide into hydrocarbon fuels. Photobioreactors employ photosynthesis for energy conversion, and Erickson envisions using an optofluidic chip to optimize how light and chemicals are distributed in the reactor.
In such systems as open-air ponds that harvest algae and collect sunlight, the light is scattered haphazardly, and the top layer gets more exposure. Optofluidic technologies, such as plasmonic nanoparticles or photonic waveguides, could more directly target the microorganisms and lead to greater energy output.
Similarly, the paper also describes how optofluidic devices could be used to improve photocatalytic systems, in which light energy splits water into the components hydrogen and oxygen, or converts carbon dioxide and water into hydrocarbon fuels. Other applications include optofluidic chips in solar collectors.
Erickson authored the review with Demetri Psaltis of Ecole Polytechnique Federal Lausanne, Switzerland, and David Sinton of the University of Toronto. His research is supported by the Academic Venture Fund of Cornell's Atkinson Center for a Sustainable Future and the National Science Foundation. Erickson is also a member of the Kavli Institute at Cornell for Nanoscale Science.
####
For more information, please click here
Contacts:
Media Contact:
Blaine Friedlander
(607) 254-8093
Cornell Chronicle:
Anne Ju
(607) 255-9735
Copyright © Cornell University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Microfluidics/Nanofluidics
Implantable device shrinks pancreatic tumors: Taming pancreatic cancer with intratumoral immunotherapy April 14th, 2023
Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022
Oregon State University research pushes closer to new therapy for pancreatic cancer May 6th, 2022
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||