Home > Press > Argonne nanoscientists invent better etching technique
![]() |
Abstract:
Imagine yourself nano-sized, standing on the edge of a soon-to-be computer chip. Down shoots a beam of electrons, carving precise topography that is then etched the depth of the Grand Canyon into the chip.
From the perspective of scientists at the U.S. Department of Energy's Argonne National Laboratory, this improved form of etching could open the door to new technologies.
Argonne nanoscientist Seth Darling and colleagues at Argonne's Center for Nanoscale Materials and Energy Systems Division say it has the potential to revolutionize how patterns are transferred onto different materials, paving a new approach for the next generation of energy, electronics and memory technologies.
The innovation combines new tricks with an old technology.
One of the biggest recent questions facing materials science has involved the development of better techniques for high-resolution lithographies such as electron-beam, or e-beam, lithography. E-beam lithography is used to manufacture the tiniest of structures, including microelectronics and advanced sensors; beams of electrons are part of a process that "prints" desired patterns into the substance.
Transferring patterns more deeply into materials would allow scientists to craft better electronics.
To create a pattern using e-beam lithography, researchers have conventionally traced a pattern within a layer called a "resist," which is then etched into the underlying substrate.
Because the resist is thin and fragile, an intermediate "hard mask" is generally laid between the resist and the substrate. Ideally, the hard mask would stick to the substrate long enough for the desired features to be etched and then be cleanly removed—though the extra layer often results in blurriness, rough edges and additional costs and complications.
But over the course of the past several years, Darling and his colleagues have developed a technique called sequential infiltration synthesis (SIS). Another method of building custom designs at the nanoscale level, SIS involves the controlled growth of inorganic materials within polymer films. This means that scientists can construct materials with unique properties and even with complex, 3-D geometries.
"With SIS, we can take that thin, delicate resist film and make it robust by infiltrating it with inorganic material," Darling explained. "That way, you don't need an intermediate mask, so you get around all the problems associated with that extra layer."
Although some resists might work better than others under certain conditions, no single approach had yet demonstrated the ability to ingrain a pattern with the ease, depth and fidelity of the Argonne approach, Darling said.
"It's possible we might be able to create very narrow features well over a micron deep using only a very thin, SIS-enhanced etch mask, which from our perspective would be a breakthrough capability," he said.
By combining sequential infiltration synthesis with block copolymers, molecules that can assemble themselves into a variety of tunable nanostructures, this technique can be extended to create even smaller features than are possible using e-beam lithography. The key is to design a selective reaction between the inorganic precursor molecules and one of the components in the block copolymer.
"This opens a wide range of possibilities," said Argonne chemist Jeff Elam, who helped create the process. "You can imagine applications for solar cells, electronics, filters, catalysts—all sorts of different devices that require nanostructures, but also the functionality of inorganic materials."
The work is published in two studies, "Enhanced polymeric lithography resists via sequential infiltration synthesis" in the Journal of Materials Chemistry and "Enhanced block copolymer lithography using sequential infiltration synthesis" in the Journal of Physical Chemistry C.
"Hopefully, our discovery gives scientists an extra advantage when it comes to creating deeper patterns with higher resolution," Darling said.
Use of the Center for Nanoscale Materials was supported by DOE's Office of Science. This work was also supported in part by the Argonne-Northwestern Solar Energy Research Center, a DOE Office of Science-funded Energy Frontier Research Center.
The Center for Nanoscale Materials at Argonne National Laboratory is one of the five DOE Nanoscale Science Research Centers (NSRCs), premier national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit nano.energy.gov.
By Jared Sagoff and Louise Lerner
####
About Argonne National Laboratory
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.
For more information, please click here
Contacts:
Louise Lerner
630/252-5526
Copyright © Argonne National Laboratory
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Laboratories
A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Govt.-Legislation/Regulation/Funding/Policy
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Chip Technology
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes
Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023
Simple ballpoint pen can write custom LEDs August 11th, 2023
Disposable electronics on a simple sheet of paper October 7th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |