Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers Assist IBM in Cognitive Computer Chip Design

Stefano Carpin, UC Merced

A digitized UC Merced campus will be used as a virtual environment in which researchers will test IBM's new cognitive computer systems.
Stefano Carpin, UC Merced

A digitized UC Merced campus will be used as a virtual environment in which researchers will test IBM's new cognitive computer systems.

Abstract:
A team of researchers led by IBM, including a pair of professors from the University of California, Merced, unveiled today a new generation of experimental computer chips designed to emulate the brain's abilities for perception, action and cognition. The result could be processors that use much less power and far less space than those found in today's computers.

Researchers Assist IBM in Cognitive Computer Chip Design

Merced, CA | Posted on August 18th, 2011

UC Merced professors Chris Kello and Stefano Carpin have been and will continue heading up one aspect of the project — designing and implementing virtual environments to test these revolutionary new systems. The building blocks of cognitive computers, these cores are expected to learn through experiences, find correlations, create hypotheses and remember and learn from the outcomes, mimicking the brain's structural and synaptic plasticity.

The goal of the project is to create a system that not only analyzes complex information from multiple sensory inputs at once, but also automatically rewires itself as it interacts with its environment — all while approaching the remarkable power and size efficiency of the human brain. To get there will require research that incorporates principles from nanoscience, neuroscience, computer science and cognitive science.

"This project represents interdisciplinary research at its finest," said Kello, a cognitive scientist in UC Merced's School of Social Sciences, Humanities and Arts. "For decades, scientists and engineers have worked on theories of cognition and intelligent algorithms without taking seriously the basic fact that human intelligence is supported by brains that weigh about 3 pounds and consume about 20 watts of power. By contrast, today's supercomputers weigh tons and consume megawatts of power."

UC Merced recently received a grant for Phase 2 of the project — known as Systems of Neuromorphic Adaptive Plastic Scalable Electronics, or SyNAPSE — as part of $21 million in new funding from the Defense Advanced Research Projects Agency (DARPA) to the IBM team. Phases 0 and 1 have been successfully completed, and the first two prototype chips have already been fabricated and are undergoing testing.

Dharmendra Modha, project leader for IBM Research, said future applications of the technology could include traffic lights that can integrate sights, sounds and smells and flag unsafe intersections before disaster happens, or cognitive co-processors that would allow servers, laptops, tablets and phones to better interact with their environments.

The UC Merced work involves creating virtual environments in which to test this technology without the costs or complications of testing them in the real world.

"We are developing a high-fidelity simulation environment to test this new technology," said Carpin, a computer scientist in the School of Engineering. "This effort builds upon our numerous years of experience in this area, and we are proud that UC Merced is playing an important role in this project."

####

About University of California, Merced
UC Merced opened Sept. 5, 2005, as the 10th campus in the University of California system and the first American research university of the 21st century. The campus significantly expands access to the UC system for students throughout the state, with a special mission to increase college-going rates among students in the San Joaquin Valley. It also serves as a major base of advanced research and as a stimulus to economic growth and diversification throughout the region. Situated near Yosemite National Park, the university is expected to grow rapidly, topping out at about 25,000 students within 30 years.

For more information, please click here

Contacts:
James Leonard
UC Merced Office of Communications
Office: 209-228-4406
Cell: 209-681-1061

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Brain-Computer Interfaces

Developing nanoprobes to detect neurotransmitters in the brain: Researchers synthesize fluorescent molecularly imprinted polymer nanoparticles to sense small neurotransmitter molecules and understand how they govern brain activity March 3rd, 2023

Taking salt out of the water equation October 7th, 2022

Development of dendritic-network-implementable artificial neurofiber transistors: Transistors with a fibrous architecture similar to those of neurons are capable of forming artificial neural networks. Fibrous networks can be used in smart wearable devices and robots September 24th, 2021

New brain-like computing device simulates human learning: Researchers conditioned device to learn by association, like Pavlov's dog April 30th, 2021

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project