Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Prototype Tools for Mass Producing Nanostructures to Launch in Singapore

Abstract:
The Industrial Consortium On Nanoimprint (ICON), which is helmed by the Institute of Materials Research and Engineering (IMRE), a research institute of Singapore's Agency for Science, Technology and Research (A*STAR), is ready to put roll-to-roll nanoimprint manufacturing to the test. This manufacturing process can easily and quickly mass produce films and surfaces with nanometer-scale textures for a host of new applications in biomedical devices, optical films, plastic electronics and flexible solar cells.

Prototype Tools for Mass Producing Nanostructures to Launch in Singapore

Singapore | Posted on July 28th, 2011

1. Nanoimprinted structures and components are being used in items such as anti-reflection films, and solar cells. However, their impact in consumer products is limited as viable manufacturing processes to scale-up the production of such nanostructures is lacking. IMRE and its partners in ICON are planning to manufacture the structures, using a roll to roll process. This fast, mass production method can create large area nanostructured components, opening the way for new consumer applications not previously conceptualised or economically feasible.

2. Roll-to-roll imprinting is the third industry-themed project by ICON that includes local and international partners such as Solves Innovative Technology Pte Ltd (Singapore), Advanced Technologies and Regenerative Medicine, LLC (ATRM) (USA), Young Chang Chemical Co. Ltd (South Korea), EV Group (Austria), Micro Resist Technology GmbH (Germany) and NTT Advanced Technology Corporation (Japan). The partners who are raw material providers, tool-makers, and end-users represent the entire value chain for producing nano-structures and putting them to use. Some of the applications that the consortium hopes to harness with roll-to-roll nanoimprint include anti-fouling surfaces, anti-reflection films to enhance the efficiency of solar cells, wire-grid polarisers, and optical films for flat panel displays.

3. "The roll-to-roll nanoimprinting technique is a crucial centerpiece in ICON's plan to complete the value chain for harnessing the true potential of our bio-mimetic multifunctional nanoimprint technology surfaces", said Dr Low Hong Yee, an IMRE senior scientist who heads the team developing the roll-to-roll nanoimprint technology. "With this method we can merge nanoimprint technologies into real-world applications and on an industrial scale", explained Dr Low, adding that the engineered materials that are produced can be made for a variety of applications. For example, nanostructures can be used to mimic patterns of surfaces found in nature to endow the synthetic surfaces with properties such as inherent colour effects, tack-free adhesion to surfaces, water-proofing and anti-reflectivity.

4. ICON will be introducing two types of roll-to-roll techniques - a thermal and a UV-based version. The thermal method makes patterns on the substrate directly, can accommodate a variety of plastics for different applications, and is ideally suited for the fabrication of micro- and nano-fluidic devices, biochemical assays as well as other biomedical applications. The UV technique allows quicker processing because it is a room temperature process, and offers the advantage of fabricating the nanostructures on cross-linkable resins, thus imparting higher thermal and mechanical stability to the imprinted products.

5. "The joint collaborative work with ICON to design and build the first roll-to-roll thermal nanoimprinting machine gives us the chance to work with other industry partners on how this equipment can be applied", commented Mr Hermann Waltl, Executive Sales and Customer Support Director of EV Group, whose global headquarters is in Austria, on the roll-to-roll thermal nanoimprinter that the company has jointly developed with ICON.

6. "ICON provides us the opportunity to hear directly from industry about their needs so that we can customise future roll-to-roll equipment designs to specific industry requirements. ICON is all about transitioning scalable nanoimprinting techniques out of the laboratory and into the marketplace. Roll-to-roll strategies certainly fit the bill here. A lot of companies are watching the progress closely", said Mr Koh Teng Hwee, Managing Director of Solves, a small and medium enterprise that had worked with IMRE to develop the roll-to-roll UV nanoimprinting tool.

7. "This partnership on roll-to-roll nanoimprinting enhances our competitiveness in the global arena, particularly in helping us create new functional and patterned film technologies for displays and solar cell applications", said Mr Kim Woo Yong, Global Marketing Director of Young Chang Chemical Co. Ltd, South Korea.

8. "We are happy to be involved in this groundbreaking project that will bring a new dimension to our core business and help us develop materials for a greater variety of markets and industries," said Mrs Gabi Gruetzner, Managing Director of Micro Resist Technology GmbH (Germany), a company that specialises in providing photoresists and polymers for micro and nanolithography.

9. ICON is Singapore's first nanotechnology consortium that encourages companies to adopt versatile, industry-ready nanoimprinting technology that can bring products to the market through sustainable manufacturing. Nanoimprint technology produces nanometer-sized structures of greater complexity using fewer processing steps, while minimising wastage of materials. It has evolved from a lithography technology for the semiconductor industry to a platform process technology that can be adapted to a wide range of applications. The members of ICON will gain first-hand access to these new technologies by working on joint projects to develop new products and applications that can potentially have huge savings in R&D.

####

About The Agency for Science, Technology and Research (A*STAR)
The Agency for Science, Technology and Research (A*STAR) is the lead agency for fostering world-class scientific research and talent for a vibrant knowledge-based and innovation-driven Singapore. A*STAR oversees 14 biomedical sciences and physical sciences and engineering research institutes, and six consortia & centres, located in Biopolis and Fusionopolis as well as their immediate vicinity.

A*STAR supports Singapore's key economic clusters by providing intellectual, human and industrial capital to its partners in industry. It also supports extramural research in the universities, and with other local and international partners.

About the Institute of Materials Research and Engineering (IMRE)

The Institute of Materials Research and Engineering (IMRE) is a research institute of the Agency for Science, Technology and Research (A*STAR). The Institute has capabilities in materials analysis & characterisation, design & growth, patterning & fabrication, and synthesis & integration. We house a range of state-of-the-art equipment for materials research including development, processing and characterisation. IMRE conducts a wide range of research, which includes novel materials for organic solar cells, photovoltaics, printed electronics, catalysis, bio-mimetics, microfluidics, quantum dots, heterostructures, sustainable materials, atom technology, etc. We collaborate actively with other research institutes, universities, public bodies, and a wide spectrum of industrial companies, both globally and locally. For more information about IMRE, please visit www.imre.a-star.edu.sg

For more information, please click here

Contacts:
For media enquiries, please contact:
Mr Eugene Low
Manager, Corporate Communications
for Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID +65 6874 8491
Mobile +65 9230 9235
Email

For technical enquiries, please contact:
Dr Low Hong Yee
Senior Scientist II
Institute of Materials Research and Engineering (IMRE)
3, Research Link
Singapore 117602
DID +65 6874 8133
Email

Copyright © The Agency for Science, Technology and Research (A*STAR)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Flexible Electronics

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Openings/New facilities/Groundbreaking/Expansion

OCSiAl expands its graphene nanotube production capacities to Europe June 17th, 2022

GLOBALFOUNDRIES Moves Corporate Headquarters to its Most Advanced Semiconductor Manufacturing Facility in New York April 27th, 2021

Oxford Instruments Plasma Technology relocates to advanced manufacturing facility: Move driven by exceptional business growth February 12th, 2021

RIT to upgrade Semiconductor and Microsystems Fabrication Laboratory through $1 million state grant: Upgrades to clean room will enhance university’s research capabilities in photonics, quantum technologies and smart systems August 16th, 2019

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Energy

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project