Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nano Sensor Detects Minute Traces of Plastic Explosives

Abstract:
Working in collaboration with the RhineMain Polytechnic, materials scientists at the TU Darmstadt have developed an extremely sensitive explosives sensor that is capable of detecting even slight traces of the high-explosive chemical compound pentaerythritol tetranitrate (PETN). Terrorists had employed PETN in several attacks on commercial aircraft.

Nano Sensor Detects Minute Traces of Plastic Explosives

Germany | Posted on July 26th, 2011

To date, the high-explosive chemical compound PETN could be detected exclusively by means of wipe tests and an ion-mobility spectrometer. However, since conducting such tests involves considerable time and effort, it is employed at airports for spot-checking only. Airport scanners and dogs trained to sniff out explosives have a hard time detecting PETN, since PETN is only slightly volatile and therefore liberates only small numbers of molecules into the ambient air. PETN is also a high explosive. Just a few grams are enough to totally destroy a medium-sized passenger car. Thanks to those properties, PETN has recently been frequently employed by terrorists. PETN was found in the package bombs that were intended to blow up cargo planes late last year and was also employed by the "underpants bomber" in his attempted attack on a passenger plane in December 2009.

Scientists at the TU‑Darmstadt have recently developed a nanosensor capable of detecting a single PETN‑molecule among ten billion air molecules. Explaining the new type of explosive detector's operation, Dipl.‑Ing. Mario Boehme stated that, "If a PETN‑molecule enters the sensor's nanotube, the nitro groups characteristic of PETN adhere to its surface and change its electrical conductivity, and that change may be detected by electronic instrumentation."

Checking for explosives without spending more time in the process

In order to detect PETN using the new sensor, all that is necessary is conducting ambient air across the sensor. Boehme added that, "One possibility would be equipping the conventional metal detectors and X‑ray machines employed at airport security checkpoints with the new sensor and a device for inducting air." That approach would allow discreetly checking all passengers and their luggage for explosives without spending more time in the process. He went on to state that, "However, another possibility would be utilizing a hand-held device similar to a table vacuum cleaner that would allow checking individual passengers." Since the sensors are extremely small and inexpensive to manufacture, he can also envision employing them at sports events or in other types of security checks. He and his research associates are currently seeking industrial collaboration partners.

####

For more information, please click here

Contacts:
Jörg Feuck
+49 6151 16-2063


Sandra Siebert
Tel.: +49(0)6151–16 2750
FAX: +49(0)6151–16 4128

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Sensors

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Homeland Security

The picture of health: Virginia Tech researchers enhance bioimaging and sensing with quantum photonics June 30th, 2023

Sensors developed at URI can identify threats at the molecular level: More sensitive than a dog's nose and the sensors don't get tired May 21st, 2021

UCF researchers generate attosecond light from industrial laser: The ultrafast measurement of the motion of electrons inside atoms, molecules and solids at their natural time scale is known as attosecond science and could have important implications in power generation, chemical- August 25th, 2020

Highly sensitive dopamine detector uses 2D materials August 7th, 2020

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Research partnerships

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project