Home > Press > Researchers show that carbon nanotubes are electrochromic
![]() |
Carbon nanotube films change color when subject to an applied voltage. (© 2011 Wiley-VCH) |
Abstract:
Smart glass can change color or even go from opaque to transparent with just the flick of a switch. Indium tin oxide is used as an electrical contact in many of these 'electrochromic' devices because it is both transparent to visible light and a good conductor of electricity. But indium and tin are both becoming increasingly expensive as the global supply diminishes.
Kazuhiro Yanagi from the Tokyo Metropolitan University, working with colleagues from across Japan, has now shown that carbon could be the perfect replacement.
Graphene sheets, consisting of a single atomic layer of carbon atoms in a honeycomb framework, can be rolled into a tube just a nanometer or so in diameter. These carbon nanotubes are highly conductive, mechanically strong, electrochemically stable and can show bright colors depending on how the sheet is rolled. Yanagi and his team have now shown that carbon nanotubes are also electrochromic.
The optical properties of carbon nanotubes can be altered by changing the density of electrons in the tube. Visible color change is achieved by applying a voltage of at least 2 V across tube when suspended in an electrolyte solution. Previous research has suggested that the nanotubes become photo-electrochemically unstable under these conditions. Yanagi and his colleagues, however, were able to prepare samples with good electrochemical stability using ionic liquids and density-gradient purifications. This combination reduced possible unexpected electrochemical reactions.
The novel electrochromic device consisted of a thin film of carbon nanotubes on a glass substrate. The team demonstrated the electrochromic function of their device using three different samples with different tube diameters. On application of a -3 V potential, 1.4 nm-diameter nanotubes went from a blue-green in color to yellow, 1.0 nm tubes turned from magenta to yellow-orange, and the initially yellow 0.84 nm sample changed to light yellow (see image). In all cases, the color returned to normal when the voltage was switched off. "Next, we would like to control the optical absorption causing the yellow color so we can get a highly transparent sheet of nanotubes, which could be important for electrochromic display applications," says Yanagi.
####
For more information, please click here
Contacts:
Committee for Public Relations
Tokyo Metropolitan University
1-1 Minami-Osawa, Hachioji-shi Tokyo, Japan 192-0397
Copyright © Tokyo Metropolitan University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
Graphene/ Graphite
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Thin films
Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024
Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Materials/Metamaterials/Magnetoresistance
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |