Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Piedmont Triad, N.C., nanotech news (Greensboro, High Point, Winston-Salem)/Serious strength: Advaero technology key to creation of new superstrong fiber

Abstract:
Imagine a strip of material one inch wide and one-tenth of an inch thick. Now imagine a stack of six cars. Finally, imagine lifting that 30,000-pound stack off the ground with that ribbon of material. And the material doesn't break.

Piedmont Triad, N.C., nanotech news (Greensboro, High Point, Winston-Salem)/Serious strength: Advaero technology key to creation of new superstrong fiber

Greensboro, NC | Posted on July 16th, 2011

Aerospace manufacturers, defense contractors and others have only been able to imagine a lightweight composite material with that strength, but a new partnership involving N.C. A&T State University spin-off Advaero Technologies may help make just such a material available in the near future.

Advaero is part of a consortium along with Stanford University and French engineered textile firm Chomarat to bring the so-called "new carbon fiber" or NCF to market, according to Advaero CEO Greg Bowers. Chomarat's North American operations are based in Anderson, S.C.

Under the arrangement, Chomarat will produce the material designed by Stanford using Advaero's technology. Bowers declined to detail the financial aspects of the consortium.

If early indications of NCF's tensile strength prove accurate — that's how hard you can pull on something before it breaks — it will represent about a three-fold improvement of the strength-to-weight ratio over current technologies, Bowers said.

"What that means is, if you make something with the same weight of material, you'd be able to make it three times stronger, or you could equal the current strength at one-third the weight," Bowers aid.

Carbon composite materials are typically made up of carbon fibers and a polymer resin that are combined using various molding methods to create the end product.

The method that produces the strongest materials, Bowers said, is to heat the composite materials under pressure in huge oven-like autoclaves, but the equipment for that process is extremely expensive. More commonly, the molding takes place under a vacuum that is easier to produce but results in a weaker composite.

The technology Advaero licensed from N.C. A&T when it spun out from the university in 2008 is called HVartm, for Heated Vacuum-Assisted Resin Transfer Molding. HVartm applies low levels of heat to the vacuum process, resulting in strengths near what is produced in an autoclave without the high cost, the company says.

Separately, Stanford University researchers recently discovered a carbon composite formulation that reduces the number of layers of carbon fibers needed to produce a particular tensile strength, but they lacked an appropriate method of infusing the resin. They sought technologies from several different companies before choosing HVartm, according to Bowers.

Putting it to work
Advaero was spun out from N.C. A&T in 2008 to commercialize the resin infusion process, and the deal with Chomarat and Stanford represents a great opportunity to put it to work, said Wayne Szafranski, assistant vice chancellor for outreach and economic development for the university.

"I use the analogy of traditional photography," Szafranski said. "You can have a camera and film and they're both nice, but they don't do anything until you put them together."

The material still needs to be proven and produced, but there is already interest in the product including from VX Aerospace, a Morganton company that manufactures and designs advanced composites.

President and Chief Engineer Bob Skillen said the NCF material will allow for whole new levels of high-strength, low-weight materials. Based on its potential, the company recently relaunched a project for the U.S. Marine Corps to produce composite floor panels for the H-46 helicopter that had been canceled because current technologies couldn't meet the combined requirements of strength, weight and cost.

"With this new material we'd be able to meet those requirements, so we've gone back to say, ‘If we can do this now, are you still interested?'" Skillen said. VX is working on an additional proposal using NCF for the U.S. Missile Defense Agency. Other potential users of the technology could range from car manufacturers to jumbo-jet makers, or other applications where material strength and weight are important factors.

Bigger possibilities
If NCF lives up to its potential, it could be a big boost for the Triad's aerospace cluster if Chomarat decides to manufacture the material in the region, which is a possibility according to Bowers and Szafranski. Chomarat officials did not return a call seeking comment, but Szafranski said such a decision would probably be a few years away.

The partnership won't result in a big increase in jobs at Advaero, which is currently based at the Joint School for Nanoscience and Nanoengineering in Greensboro and has four employees and five interns, Bowers said.

But the company does intend to develop its own manufacturing capacity over time. It's currently focusing on applications in the area of wind-turbine energy production and is also developing new products making use of high-temperature nanofibers.

"We want to move this technology forward as quickly as we can," Bowers said.

####

For more information, please click here

Contacts:
Bert Woodard
Next Level Communications
www.nextlevelcom.net
For Piedmont Triad Partnership
336-978-0021

Copyright © Piedmont Triad Partnership

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Materials/Metamaterials/Magnetoresistance

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Automotive/Transportation

Leading the charge to better batteries February 28th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Aerospace/Space

Flexible electronics integrated with paper-thin structure for use in space January 17th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

The National Space Society Congratulates Blue Origin on the Inaugural Flight of New Glenn: The Heavy Lift Reusable Rocket Will Open New Frontiers and Provide Healthy Competition January 17th, 2025

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project