Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Why graphene holds the key to the future: In public lecture at UC Riverside on May 19, graphene expert Jeanie Lau will discuss wonders of the new exciting material

Abstract:
Graphene, a one-atom thick sheet of carbon atoms arranged in hexagonal rings, is the latest "wonder material" that has taken scientific communities and industrial sectors by storm.

Why graphene holds the key to the future: In public lecture at UC Riverside on May 19, graphene expert Jeanie Lau will discuss wonders of the new exciting material

Riverside, CA | Posted on May 9th, 2011

Bearing excellent material properties, such as high current-carrying capacity and thermal conductivity, graphene is ideally suited for creating components for semiconductor circuits and computers. Moreover, it enables table-top experimental tests of a number of phenomena in physics involving quantum mechanics and relativity.

Jeanie Lau, an associate professor of physics and astronomy at the University of California, Riverside, will give a free public lecture on campus to discuss what graphene is, why it is interesting, what novel properties it boasts, and how it may impact our lives in 10-20 years.

Titled "Size Matters: Nanotechnology & Other Wonders in Carbon Flatland," the hour-long lecture will begin at 6 p.m., May 19, in Rooms D-E, University Extension Center (UNEX).

Doors open at 5:30 p.m. Seating is open. Parking at UNEX will be free for lecture attendees.

"Graphene has many wondrous properties that are literally mind-boggling," said Lau, recipient of a 2009 Presidential Early Career Award for Scientists and Engineers. "For instance, it is stronger than steel yet softer than Saran wrap; it is transparent yet conducts electricity and heat much better than copper. It has been hailed as the most promising material to replace silicon for the next generation of electronics. It is produced by every school kid, but was only 'discovered' in 2004 and won the 2010 Nobel Prize in physics for its co-discoverers."

Graphene's planar geometry allows the fabrication of electronic devices and the tailoring of a variety of electrical properties. Because it is only one-atom thick, it can potentially be used to make ultra-small devices and further miniaturize electronics. Scientifically, it is a new model system for condensed-matter physics, the branch of physics that deals with the physical properties of solid materials.

Lau's talk is being hosted by UCR's College of Natural and Agricultural Sciences and the Science Circle, a group of university and community members committed to advancing science at UCR and in Inland Southern California.

The talk is the last of four lectures scheduled this year. The lecture series, titled "Science & Society: Major Issues of the 21st Century," aims to boost the public's awareness and understanding of science and of how scientists work.

####

For more information, please click here

Contacts:
Iqbal Pittalwala

951-827-6050

Copyright © University of California - Riverside

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Graphene/ Graphite

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Chip Technology

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Events/Classes

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

Quantum nanoscience

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Programmable electron-induced color router array May 14th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project