Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Conducting Ferroelectrics May be Key to New Electronic Memory

Abstract:
Novel properties of ferroelectric materials discovered at the Department of Energy's Oak Ridge National Laboratory are moving scientists one step closer to realizing a new paradigm of electronic memory storage.

Conducting Ferroelectrics May be Key to New Electronic Memory

Oak Ridge, TN | Posted on April 27th, 2011

A new study led by ORNL's Peter Maksymovych and published in the American Chemical Society's Nano Letters revealed that contrary to previous assumptions, domain walls in ferroelectric materials act as dynamic conductors instead of static ones.

Domain walls, the separation zones only a few atoms wide between opposing states of polarization in ferroelectric materials, are known to be conducting, but the origin of the conductivity has remained unclear.

"Our measurements identified that subtle and microscopically reversible distortions or kinks in the domain wall are at the heart of the dynamic conductivity," Maksymovych said. "The domain wall in its equilibrium state is not a true conductor like a rigid piece of copper wire. When you start to distort it by applying an electric field, it becomes a much better conductor."

Ferroelectrics, a unique class of materials that respond to the application of an electric field by microscopically switching their polarization, are already used in applications including sonar, medical imaging, fuel injectors and many types of sensors.

Now, researchers want to push the boundaries of ferroelectrics by making use of the materials' properties in areas such as memory storage and nanoelectronics. Gaining a detailed understanding of electrical conductance in domain walls is seen as a crucial step toward these next generation applications.

"This study shows for the first time that the dynamics of these defects - the domain walls - are a much richer source of memory functionality," Maksymovych said. "It turns out you can dial in the level of the conductivity in the domain wall, making it a tunable, metastable, dynamic memory element."

The domain wall's tunable nature refers to its delayed response to changes in conductivity, where shutting off an electric field does not produce an immediate drop in conductance. Instead, the domain wall "remembers" the last level of conductance for a given period of time and then relaxes to its original state, a phenomenon known as memristance. This type of behavior is unlike traditional electronics, which rely on silicon transistors that act as on-off switches when electric fields are applied.

"Finding functionality intrinsic to nanoscale systems that can be controlled in a novel way is not a path to compete with silicon, but it suggests a viable alternative to silicon for a new paradigm in electronics," Maksymovych said.

The ORNL-led team focused on bismuth ferrite samples, but researchers expect that the observed properties of domain walls will hold true for similar materials.

"The resulting memristive-like behavior is likely to be general to ferroelectric domain walls in semiconducting ferroelectric and multiferroic materials," said ORNL co-author Sergei Kalinin.

The samples used in the study were provided by the University of California at Berkeley. Other authors are ORNL's Arthur Baddorf, Jan Seidel and Ramamoorthy Ramesh of Lawrence Berkeley National Laboratory and UC Berkeley, and Pennsylvania State University's Pingping Wu and Long-Qing Chen.

Part of this work was supported by the Center for Nanophase Materials Sciences at ORNL. CNMS is one of the five DOE Nanoscale Science Research Centers supported by the DOE Office of Science, premier national user facilities for interdisciplinary research at the nanoscale. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the
largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos national laboratories.

Work at Lawrence Berkeley National Laboratory and the University of California, Berkeley, was supported by DOE's Office of Science and the Semiconductor Research Corporation.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science.

####

For more information, please click here

Contacts:
Morgan McCorkle
ORNL Communications
(865) 574-7308

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Memory Technology

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project