Home > Press > “Graphene oxide nanoribbon actuators for MEMS and other electrolyte-free motion systems”
Abstract:
Graphene oxide nanoribbons (GOr), obtained by chemically unzipping multi-walled carbon nanotubes, were assembled into macroscopic mats by vacuum filtration. These mats exhibited up to 1.6% reversible contraction when electrically heated at ambient conditions. The experimentally derived work capacity of the mats was about 40 J/kg, which is similar to that of natural muscle. It was limited by the mechanical strength of mats and can be increased upon optimization of their preparation conditions. X-ray diffraction measurements indicated reversible changes in the interplanar spacing of GOr layers during heating. These dimensional changes can be associated with reversible adsorption/desorption of water molecules between GOr layers and used in thermally-driven micro-electromechanical systems (MEMS), micromachines, various opto-mechanic and micro-fluidic devices. Similar to shape memory alloy actuators, GOr mats can be deployed for electrolyte-free artificial muscle applications. The work reported in Chemical Physics Letters, 505 (2011) 31 extends the list of properties available from graphene oxide.
####
For more information, please click here
Contacts:
Mikhail E Kozlov
Copyright © University of Texas Dallas
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
"Thermal actuation of graphene oxide nanoribbon mats" in Chemical Physics Letters.
Related News Press |
Graphene/ Graphite
Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
MEMS
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||