Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers find replacement for rare material indium tin oxide

4-point conductivity measurement of the new transparent conducting film developed by prof. Cor Koning (left) and prof. Paul van der Schoot (right). The black pot contains a dispersion of carbon nanotubes in water, and the white pot contains the conducting latex. Photo: Bart van Overbeeke.
4-point conductivity measurement of the new transparent conducting film developed by prof. Cor Koning (left) and prof. Paul van der Schoot (right). The black pot contains a dispersion of carbon nanotubes in water, and the white pot contains the conducting latex. Photo: Bart van Overbeeke.

Abstract:
Researchers at Eindhoven University of Technology (TU/e, Netherlands) have developed a replacement for indium tin oxide (ITO), an important material used in displays for all kinds of everyday products such as TVs, telephones and laptops, as well as in solar cells. Unfortunately indium is a rare metal, and the available supplies are expected to be virtually exhausted within as little as ten years. The replacement material is a transparent, conducting film produced in water, and based on electrically conducting carbon nanotubes and plastic nanoparticles. It is made of commonly available materials, and on top of that is also environment-friendly. The results, which also provide new insights into conduction in complex composite materials, were published online yesterday 10 April by the scientific journal Nature Nanotechnology.

Researchers find replacement for rare material indium tin oxide

Eidhoven, The Netherlands | Posted on April 11th, 2011

The research team has been able to achieve higher conductivity by combining low concentrations of carbon nanotubes and conducting latex in a low-cost polystyrene film. The nanotubes and the latex together account for less than 1 percent of the weight of the conducting film. That is important, because a high concentration of carbon nanotubes makes the film black and opaque, so the concentration needs to be kept as low as possible. The research team was led by theoretical physicist Paul van der Schoot and polymer chemist Cor Koning. Post-doc Andriy Kyrylyuk is the first author of the paper in Nature Nanotechnology.

The researchers use standard, widely available nanotubes which they dissolve in water. Then they add conducting latex (a solution of polymer beads in water), together with a binder in the form of polystyrene beads. When the mixture is heated, the polystyrene beads fuse together to form the film, which contains a conducting network of nanotubes and beads from the conducting latex. The water, which only serves as a dispersing agent in production, is removed by freeze-drying. The ‘formula' is not a question of good luck, as the researchers first calculated the expected effects and also understand how the increased conductivity works.

The conductivity of the transparent e film is still a factor 100 lower than that of indium tin oxide. But Van der Schoot and Koning expect that the gap can quickly be closed. "We used standard carbon nanotubes, a mixture of metallic conducting and semiconducting tubes", says Cor Koning. "But as soon as you start to use 100 percent metallic tubes, the conductivity increases greatly. The production technology for 100 percent metallic tubes has just been developed, and we expect the price to fall rapidly." However the conductivity of the film is already good enough to be used immediately as an antistatic layer for displays, or for EMI shielding to protect devices and their surroundings against electromagnetic radiation.

The film has an important advantage over ITO: it is environment-friendly. All the materials are water based, and no heavy metals such as tin are used. The new film is also a good material for flexible displays.

The researchers themselves are very positive about the diversity of their team, which they believe made an important contribution to the results. "We had a unique combination of theoreticians, modeling specialists and people to do practical experiments", says Paul van der Schoot. "Without that combination we wouldn't have succeeded."

The article ‘'Controlling Electrical Percolation in Multi-Component Carbon Nanotube Dispersions' was published yesterday, Sunday 10 april, on the website of the journal Nature Nanotechnology (DOI: 10.1038/NNANO.2011.40). The research forms part of the Functional Polymer Systems research program at the Dutch Polymer Institute (DPI), which provided financial support for this project. Prof. Cor Koning is with the Polymer Chemistry group (Department of Chemical Engineering and Chemistry) and prof. Paul van der Schoot is with the Theory of Polymers and Soft Matter group (Department of Applied Physics) of Eindhoven University of Technology. The other authors of the article are Andriy Kyrylyuk (first author), Marie Claire Hermant, Tanja Schilling and Bert Klumperman.

Andriy Kyrylyuk is the first author of the paper in Nature Nanotechnology. DOI: 10.1038/NNANO.2011.40

####

For more information, please click here

Contacts:
Ivo Jongsma
+31 40 247 2110

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Display technology/LEDs/SS Lighting/OLEDs

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project