Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Charge It: Neutral Atoms Made to Act Like Electrically Charged Particles

Abstract:
Completing the story they started by creating synthetic magnetic fields,* scientists from the Joint Quantum Institute (JQI), a collaboration of the National Institute of Standards and Technology (NIST) and the University of Maryland, have now made atoms act as if they were charged particles accelerated by electric fields.

Charge It: Neutral Atoms Made to Act Like Electrically Charged Particles

Gaithersburg, MD | Posted on March 31st, 2011

Reported in the journal Nature Physics,** these synthetic electric fields make each atom in a gas act, individually, as if it were a charged particle, but collectively they remain neutral, uncharged particles. This dual personality will help researchers simulate and study fundamental electrical phenomena and may lead to a deeper understanding of exotic phenomena involving charged particles such as superconductivity, the flow of electricity without resistance, or the quantum Hall effect, used by NIST to create a standard of electrical resistance.

Some aspects of electricity are difficult to study because, although oppositely charged particles are attracted to one another, similarly charged particles are repelled by one another. To get around this, NIST physicist Ian Spielman and his colleagues realized that they could make atoms, which are typically electrically neutral, act as if they are charged particles in an electric field—extending their earlier method for making neutral atoms act like charged particles in a magnetic field.

The researchers create their synthetic electric field in an ultracold gas of several hundred thousand rubidium atoms. Using lasers, the team alters the atoms' energy-momentum relationship. This had the effect of transferring a bit of the lasers' momentum to the atoms, causing them to move. The force on each atom is physically identical—and mathematically equivalent—to what a charged particle would feel in an electric field.

So while the neutral atoms each experience the force of this synthetic electric field individually, they do not repel each other as would true charged particles in an ordinary electric field. This is analogous to an experienced group of dancers all following the moves of their instructor without getting in each other's way.

According to Spielman, this work may enable scientists to study the Hall effect, a phenomenon where an electromagnetic field can cause charged particles traveling through a conductor to experience a sideways force, which has of yet been unobserved in cold-atom systems. The work may also facilitate measurements of the atomic equivalents of electrical quantities such as resistance and inductance.

For neutral atoms in synthetic electric fields, inductance is a measure of the energy that is stored as a result of the atoms' motion, and resistance is a measure of the dissipation, or energy loss, in the system. Measuring these quantities could provide insights into the properties of charged particles in analogous systems, including superconductors.

* See "JQI Researchers Create 'Synthetic Magnetic Fields' for Neutral Atoms," Dec. 15, 2009, at www.nist.gov/pml/div684/synthetic_121509.cfm.

** Y-J. Lin, R. L. Compton, K. Jiménez-García, W. D. Phillips, J. V. Porto and I. B. Spielman, A synthetic electric force acting on neutral atoms, Nature Physics. Published online March 20, 2011.

####

For more information, please click here

Contacts:
Mark Esser

301-975-8735

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Physics

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Chip Technology

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

Bringing the power of tabletop precision lasers for quantum science to the chip scale December 13th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project