Home > Press > Research and Markets: Nokia's NanoTechnology Research - Nokia's NanoTech Research Agenda, Results and Future Directions - Nano-Sensors Not to Reach Market Until 2020-2025
Abstract:
Research and Markets has announced the addition of the "Nokia's NanoTechnology Research - Nokia's NanoTech Research Agenda, Results and Future Directions" report to their offering.
This report analyzes Nokia's research into NanoTechnology for Mobile Devices, carried out with the University of Cambridge. This research is implementing their Morph concept from 2008, and is exploring a wide range of NanoTechnologies. We draw information from research publications and presentations, patent applications, demonstrations and other documents to assemble a complete picture of Nokia's research, its implications, and its future directions.
Technologies for: Flexible and stretchable devices and circuits Flexible high-power fast-release batteries Materials that repel water and absorb solar energy Flexible touch-screen displays Harvesting energy from 500mhz-10ghz RF and more
Around three years ago Nokia released a video of their Morph concept, a mobile device based on nanotechnology. This vision included a flexible and stretchable phone that could be bent into many shapes and worn as a bracelet. It included sensors for things such as rotten or unclean food, and the ability to recharge from the sun.
The report draws information from Nokia patent applications, presentations, demo videos and seminars, which cover most of the innovative features of their concept.
Many areas are being researched with multiple applications in mind. For example, technology for flexible & stretchable electronics for a Morph-like flexible cellphone can also be used for a glove that senses movements as an input to a phone or computer. Also, thin and flexible batteries for a Morph-like device can also enable stronger camera flashes because of their high storage & fast energy release. Multiple applications of the same core technology may enable Nokia to bring NanoTech innovations to market sooner, without waiting for the entire Morph vision to be implemented.
Grizzly Analytics believes that some of the technologies detailed here, such as flexible device components and device materials absorbing energy from the sun and ambient radio energy, will start to reach market in 5-7 years, while other areas such as nano-sensors and completely flexible devices will take until 2020-2025.
BOTTOM LINE: Nokia & others are getting first access to technology that will revolutionize electronic devices form & function. Others will buy components, but risk being behind in understanding the implications for hardware integration and design.
Key Topics Covered:
Executive Summary
Table of Functions and Technologies
Speculations, Opportunities & Broader Implications
Nokia's Morph Vision
Nokia's NanoTech Research Agenda
NanoTech Demonstrations in Sept 2010
NanoTech-Related Patent Applications
Patents from Cambridge alliance
Non-Nokia patents from collaborating researchers
Patents from other Nokia research centers
Other NanoTech-Related Research
Analysis: Agenda and Results
Companies Mentioned:
Nokia
Cambridge University
####
For more information, please click here
Contacts:
Research and Markets
Laura Wood, Senior Manager,
U.S. Fax: 646-607-1907
Fax (outside U.S.): +353-1-481-1716
Copyright © Business Wire
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Sensors
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||