Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Atom-thick sheets hold the key to new technologies

Abstract:
Scientists have developed a new technique for splitting ‘layered materials' into atom-sized nanosheets, which could lead to advances in energy storage technologies and electronic devices, according to research published today in the journal Science.

Atom-thick sheets hold the key to new technologies

London, UK | Posted on March 28th, 2011

Layered materials are man-made and there are more than 150 types including boron nitride, molybdenum disulfide and tungsten disulfide. These materials have the potential to conduct and store energy when they are split into microscopic layers called "nanosheets". For decades, scientists have been working on methods to create nanosheets, but previous attempts have been time-consuming and resulted in the nanosheets being damaged, making them fragile and unsuitable for use.

A team of researchers have demonstrated for the first time in their study that they can make ‘nanosheets' from layered materials, without damaging their electrical and energy storage properties. The researchers say these nanosheets could be used to develop the next generation of metallic and semi-metallic composite materials. They could also be used to make electronic devices including energy storage technologies and thermoelectric materials that can convert heat into electrical energy.

The researchers say their technique for creating nanosheets is simple, fast and inexpensive. They beleive that it could be scaled up to an industrial level, where billions of nanosheets could be produced at an hourly rate.

There are over 150 types of layered materials including boron nitride, molybdenum disulfide and tungsten disulfide.

The technique involves the scientists mixing layered material with a solvent, which is a liquid solution that dissolves substances. The solvent is subjected to high frequency sound energy from an ultrasonic probe. The combined effect of the solvent and the sound energy vibrations cause the layered material to separate into nanosheets.

The international study includes researchers from the London Centre for Nanotechnology, Imperial College London, the University of Oxford, Trinity College Dublin, Korea University and Texas A&M University.

Professor David McComb, from the Department of Materials at Imperial College London, who contributed to the research, said: "Nanosheets could be used to advance a range of technologies: from sensors to batteries and super-strong materials. Nanosheets could also be combined with other conventional materials such as silicon to create new kinds of hybrid computing technologies."

The research carried out at Imperial was supported by the Engineering and Physical Sciences Research Council under the Access to Nanoscience Equipment award.

####

For more information, please click here

Copyright © London Centre for Nanotechnology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Journal link: Science 4 February 2011: Vol. 331 no. 6017 pp. 568-571

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Chip Technology

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project