Home > Press > Moisture Barriers for Flexible Electronics
Abstract:
By Dr Harry Zervos, Technical Analyst, IDTechEx
Defects on plastic substrates such as pinholes, cracks and grain boundaries cause a 'pore effect', where oxygen and water molecules are able to seep through and penetrate through the plastic barrier and into the active material. For applications such as flexible OLED displays, organic solar cells, or even electrophoretic displays, sensitivity to oxygen and moisture compromises device lifetime significantly. This means that in order to achieve adequate lifetime for flexible devices that would make viable commercial products, the pathway for oxygen and moisture down into the active layers must be blocked.
Terra-Barrier
Tera-Barrier Films is a portfolio company of Exploit Technologies Pte. Ltd. (ETPL), the commercialisation arm of Singapore's Agency for Science, Technology and Research (A*STAR) and Applied Ventures, LLC, the venture capital arm of Applied Materials, Inc. as of August 2009. The company was incubated by Exploit-Technologies Pte. Ltd. as a Flagship programme for two years prior to spin-off.
Current barrier technologies focus on reducing these defects by using alternate organic and inorganic multilayers coated on plastic. In contrast, Tera-Barrier has taken an innovative approach to resolve the 'pore effect' by literally plugging the defects in the barrier oxide films using nanoparticles. This reduces the number of barrier layers needed in the construction of the barrier film down to two layers in this unique nanoengineered barrier stack. Tera-Barrier's barrier stack consists of barrier oxide layers and nanoparticulate sealing layers. The nanoparticles used in the barrier film have a dual function - not only sealing the defect but also actively reacting with and retaining the moisture and oxygen.
Source: Terra-Barrrier
The result is a moisture barrier performance of better than 10-6 g/m2.day which satisfies even the most stringent requirements for flexible organic device substrates. The barrier film also has a lag time of more than 2,300 hours at 60 ⁰C and 90% RH (i.e. the time required for moisture to pass through the barrier film under those conditions).
Adhesives: Henkel, DELO
It's also important to point out that the barrier layer on its own is not an adequate way to keep oxygen and moisture away from the active materials. Moisture ingress can also occur from the side of the device if it is not adequately sealed. This leads to specific requirements in water vapour transmission rates for the sealants used in electronic devices.
Two of the main companies developing these types of adhesives are Henkel and DELO, Henkel focused mainly on thermally-cured solutions while DELO is focused on UV-cured adhesives.
A trade-off becomes apparent when trying to find the right balance of permeation rates and flexibility. The adhesives that are characterised by the best performance in terms of water vapour transmission are more rigid and would compromise the overall flexibility of the final device. This means that in order to manufacture devices of a given flexibility, permeation performance needs to be sacrificed. Hence, a lot of research and development effort is focused into the development of systems that would lead to a good balance between permeation performance and flexibility.
For more in-depth presentations from Henkel, DELO and Terra Barrier as well as breakthroughs in other materials, manufacturing and novel devices, don't miss the opportunity to attend Printed Electronics/Photovoltaics Europe, in Dusseldorf, Germany on the 5th and 6th of April 2011.
####
For more information, please click here
Contacts:
Cara Harrington
c.harrington@IDTechEx.com
Copyright © IDTechEx
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Display technology/LEDs/SS Lighting/OLEDs
Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024
New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024
Chip Technology
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Nanoelectronics
Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Announcements
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Events/Classes
A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024
Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023
Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes
Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023
Simple ballpoint pen can write custom LEDs August 11th, 2023
Disposable electronics on a simple sheet of paper October 7th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |