Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New blood analysis chip could lead to disease diagnosis in minutes

Schematic of the tether-free SIMBAS chip that shows some of the functional elements, such as the blood loading area, the plasma separation microtrenches, detection sites and the suction flow structures.  (Ivan Dimov image)
Schematic of the tether-free SIMBAS chip that shows some of the functional elements, such as the blood loading area, the plasma separation microtrenches, detection sites and the suction flow structures. (Ivan Dimov image)

Abstract:
A major milestone in microfluidics could soon lead to stand-alone, self-powered chips that can diagnose diseases within minutes. The device, developed by an international team of researchers from the University of California, Berkeley, Dublin City University in Ireland and Universidad de Valparaíso Chile, is able to process whole blood samples without the use of external tubing and extra components.

New blood analysis chip could lead to disease diagnosis in minutes

Berkeley, CA | Posted on March 16th, 2011

The researchers have dubbed the device SIMBAS, which stands for Self-powered Integrated Microfluidic Blood Analysis System. SIMBAS appeared as the cover story March 7 in the peer-reviewed journal Lab on a Chip.

"The dream of a true lab-on-a-chip has been around for a while, but most systems developed thus far have not been truly autonomous," said Ivan Dimov, UC Berkeley post-doctoral researcher in bioengineering and co-lead author of the study. "By the time you add tubing and sample prep setup components required to make previous chips function, they lose their characteristic of being small, portable and cheap. In our device, there are no external connections or tubing required, so this can truly become a point-of-care system."

Dimov works in the lab of the study's principal investigator, Luke Lee, UC Berkeley professor of bioengineering and co-director of the Berkeley Sensor and Actuator Center.

"This is a very important development for global healthcare diagnostics," said Lee. "Field workers would be able to use this device to detect diseases such as HIV or tuberculosis in a matter of minutes. The fact that we reduced the complexity of the biochip and used plastic components makes it much easier to manufacture in high volume at low cost. Our goal is to address global health care needs with diagnostic devices that are functional, cheap and truly portable."

For the new SIMBAS biochip, the researchers took advantage of the laws of microscale physics to speed up processes that may take hours or days in a traditional lab. They note, for example, that the sediment in red wine that usually takes days to years to settle can occur in mere seconds on the microscale.

The SIMBAS biochip uses trenches patterned underneath microfluidic channels that are about the width of a human hair. When whole blood is dropped onto the chip's inlets, the relatively heavy red and white blood cells settle down into the trenches, separating from the clear blood plasma. The blood moves through the chip in a process called degas-driven flow.

For degas-driven flow, air molecules inside the porous polymeric device are removed by placing the device in a vacuum-sealed package. When the seal is broken, the device is brought to atmospheric conditions, and air molecules are reabsorbed into the device material. This generates a pressure difference, which drives the blood fluid flow in the chip.

In experiments, the researchers were able to capture more than 99 percent of the blood cells in the trenches and selectively separate plasma using this method.

"This prep work of separating the blood components for analysis is done with gravity, so samples are naturally absorbed and propelled into the chip without the need for external power," said Dimov.

The team demonstrated the proof-of-concept of SIMBAS by placing into the chip's inlet a 5-microliter sample of whole blood that contained biotin (vitamin B7) at a concentration of about 1 part per 40 billion.

"That can be roughly thought of as finding a fine grain of sand in a 1700-gallon sand pile," said Dimov.

The biodetectors in the SIMBAS chip provided a readout of the biotin levels in 10 minutes.

"Imagine if you had something as cheap and as easy to use as a pregnancy test, but that could quickly diagnose HIV and TB," said Benjamin Ross, a UC Berkeley graduate student in bioengineering and study co-author. "That would be a real game-changer. It could save millions of lives."

"The SIMBAS platform may create an effective molecular diagnostic biochip platform for cancer, cardiac disease, sepsis and other diseases in developed countries as well," said Lee.

Other co-lead authors of the study are Lourdes Basabe-Desmonts, senior scientist at Dublin City University's Biomedical Diagnostics Institute, and Jose L. Garcia-Cordero, currently post-doctoral scientist at École Polytechnique Fédérale de Lausanne (EPFL Switzerland). Antonio J. Ricco, adjunct professor at the Biomedical Diagnostics Institute at Dublin City University, also co-authored the study.

The work was funded by the Science Foundation Ireland and the U.S. National Institutes of Health.

####

For more information, please click here

Contacts:
Sarah Yang
(510) 643-7741


Luke Lee
(510) 642-5855 (office)
(510) 417-9102 (cell)


Ivan Dimov
(510) 501-1670

Copyright © University of California, Berkeley

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Microfluidics/Nanofluidics

Implantable device shrinks pancreatic tumors: Taming pancreatic cancer with intratumoral immunotherapy April 14th, 2023

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Researchers design new inks for 3D-printable wearable bioelectronics: Potential uses include printing electronic tattoos for medical tracking applications August 19th, 2022

Oregon State University research pushes closer to new therapy for pancreatic cancer May 6th, 2022

Lab-on-a-chip

Micro-scale opto-thermo-mechanical actuation in the dry adhesive regime Peer-Reviewed Publication September 24th, 2021

RIT researchers build micro-device to detect bacteria, viruses: New process improves lab-on-chip devices to isolate drug-resistant strains of bacterial infection, viruses April 17th, 2020

Silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm March 13th, 2020

Moving diagnostics out of the lab and into your hand: Electrochemical sensor platform technology could enable portable, multiplexed, point-of-care diagnostics for a wide range of applications November 11th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Research partnerships

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project