Home > Press > Nailing Down Nanostructures
![]() |
Engineering professors Bo Tan (left) and Krishnan Venkatakrishnan share a lab and a focus on nanostructures, an emerging field of study. |
Abstract:
Husband-and-wife researchers Krishnan Venkatakrishnan and Bo Tan are proving that good things really can come in small packages - especially if the package measures one billionth of a metre.
Tan is a professor of aerospace engineering while Venkatakrishnan is a professor of mechanical and industrial engineering. The couple met while completing doctoral studies at Nanyang Technological University in Singapore, and today they share a lab - and co-supervise students - at Ryerson.
Personal relationship aside, why collaborate with a mechanical engineering professor when your own expertise is in aerospace engineering? Tan explains: "The process of making an airplane requires many disciplines - physics, electrical engineering and mechanical engineering, to name just a few. Plus, [through multidisciplinary partnerships], the application of my research can go beyond the aerospace industry."
In 2008, both Tan and Venkatakrishnan received Early Researcher Awards from the Ontario Ministry of Research and Innovation for their work in advanced manufacturing research. These days, the researchers are focused on tiny entities called nanostructures. These manufactured configurations of particles, ranging in scale from molecular to microscopic, represent a relatively new area of study - so new in fact, that theories developed today could be disproved just five years from now.
"Our research interests complement each other," says Venkatakrishnan. "My wife is exploring the fundamental principles of nanostructures, whereas I am looking at their applications."
And there are a lot to choose from. For example, Venkatakrishnan and Tan first began studying nanostructures within micro-electronics. More recently, though, the researchers have started developing nanostructures using a variety of materials. One example: the pair's research on eggshell-based nanostructures - co-authored with Ryerson PhD candidate Amirhossein Tavangar - was published last month in the Journal of Nanobiotechnology.
But eggshells aren't the only materials that can support nanostructures; bones and other natural bio-materials are also being studied in Venkatakrishnan and Tan's lab. Typically, fragile ceramics or rigid polymers are used in surgery to fix broken, old or cancer-damaged bones. Nanostructures embedded within actual bones, however, offer a better solution and can help "glue" deteriorated or fragmented bones back together. Through a biomedical process called tissue scaffolding, a porous, artificially created material is used to simulate real tissue and stimulate new bone growth in the body - something that other grafting materials are limited in their capacity to do.
Venkatakrishnan and Tan are also investigating how nanostructures can improve the efficiency of solar-energy panels. By decreasing the amount of light that is reflected from a solar panel, nanostructures will enable more solar energy to be converted into electricity.
Finally, the researchers are exploring the use of nanostructures in water-quality monitoring. Acting as sensors, nanostructures can generate signals to indicate the presence of contaminants in drinking water.
To that end, Venkatakrishnan says studying the many potential uses of nanostructures doesn't have to be very complicated. "Other researchers are using complex processes and hugely expensive equipment, but in our lab, we're using a simple concept and it can be applied to many materials."
####
About Ryerson University
Ryerson University is Canada’s leader in innovative, career-oriented education and a university clearly on the move. With a mission to serve societal need, and a long-standing commitment to engaging its community, Ryerson offers more than 100 undergraduate and graduate programs. Distinctly urban, culturally diverse and inclusive, the university is home to 28,000 students, including 2,000 master’s and PhD students, nearly 2,700 tenured and tenure-track faculty and staff, and more than 130,000 alumni worldwide. Research at Ryerson is on a trajectory of success and growth: externally funded research has doubled in the past four years. The G. Raymond Chang School of Continuing Education is Canada's leading provider of university-based adult education.
For more information, please click here
Contacts:
Ryerson University
News office:
Public Affairs
350 Victoria St. - YNG-900
Toronto M5B 2K3 Canada
Phone news office: 416-979-5304
Phone main: 416-979-5000
Fax news office: 416-979-5208
Johanna VanderMaas
Public Affairs
Ryerson University
Office: 416-979-5000 x 4630
Copyright © Ryerson University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Imaging
Turning up the signal November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Nanomedicine
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Human Interest/Art
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
Drawing data in nanometer scale September 30th, 2022
Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022
Graphene nanotubes revolutionize touch screen use for prosthetic hands August 3rd, 2021
Alliances/Trade associations/Partnerships/Distributorships
Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022
University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |