Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Versatile Ultra-low Power Biomedical Signal Processor

Flexible ultra-low power biomedical signal processor designed by imec, Holst Centre and NXP.
Flexible ultra-low power biomedical signal processor designed by imec, Holst Centre and NXP.

Abstract:
At today's International Solid-State Circuit Conference (ISSCC2011), imec, Holst Centre and NXP present a versatile ultra-low power biomedical signal processor, CoolBioTM, meeting the requirements of future wearable biomedical sensor systems. The biomedical signal processor consumes only 13pJ/cycle when running a complex ECG (electrocardiogram) algorithm at 1MHz and 0.4V operating voltage. This C-programmable chip is voltage and performance scalable supporting a frequency range of 1MHz up to 100MHz with an operating voltage from 0.4 to 1.2V.

Versatile Ultra-low Power Biomedical Signal Processor

San Francisco, CA | Posted on February 23rd, 2011

Intelligent body area networks (BANs) consisting of wireless sensors nodes which continuously monitor vital body parameters such as heart, muscle and brain activity promise to be a solution for more comfortable, cost- and time-efficient healthcare systems. They allow people to be monitored and followed up at home, doing their daily life activities.

A major challenge in developing such BANs is to bring overall power consumption down to a level where the system can be powered by energy harvesting or a microbattery that runs for months.

The CoolBio allows drastic power reduction of the wireless BAN sensor nodes. Processing and compressing data locally on the BAN node limits power hungry transmission of data over the wireless link, while adding motion artifact reduction and smart diagnosis at the same time.

Imec, Holst Centre and NXP started from the commercially available low power CoolFluxTM DSP baseband core from NXP (see www.coolflux.com) to design an ultra-low power flexible processor solution for body area networks applications. The architecture and circuitry were adapted to operate at near-threshold voltage (0.4V) at low operating frequencies. Extreme separation into multiple voltage power, clock and memory domains were implemented to guarantee high energy efficiency from standby to 100 MHz performance. The result means reduced power consumption at low operating frequency, while maintaining high performance possibilities for multi-channel biomedical signal processing.

"We designed the CoolBio based on the concept: "If there's nothing to be done, then don't waste energy!" With this key research focus on low power circuit techniques, we succeeded in designing with our industrial partner NXP a biomedical processor suitable for future biomedical products offering an optimized balance between performance and power consumption;" said Harmke De Groot, program director imec the Netherlands at Holst Centre.

"Ultra low power dissipation is a critical requirement for ubiquitous deployment of Personal Health solutions. NXP continues to push the envelope on all critical functions required in wearable healthcare solutions. CoolBio complements our comprehensive ultra low power portfolio with which we enable solutions improving people's quality of life;" said Bart De Loore, VP New Business at NXP.

Medical device companies, Semiconductor manufacturers or fabless design houses who aim to evaluate the CoolBio or to develop their own bioprocessor can build on imec's expertise by joining imec's research program on ultra-low power processing for body area networks, part of the HUMAN++ program.

####

About IMEC
Imec performs world-leading research in nanoelectronics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society. Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, US, China and Japan. Its staff of more than 1,750 people includes over 550 industrial residents and guest researchers. In 2009, imec's revenue (P&L) was 275 million euro. Further information on imec can be found at www.imec.be.

Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a "stichting van openbaar nut”), imec Belgium (IMEC vzw supported by the Flemish Government), imec the Netherlands (Stichting IMEC Nederland, part of Holst Centre which is supported by the Dutch Government), imec Taiwan (IMEC Taiwan Co.) and imec China (IMEC Microelectronics (Shangai) Co. Ltd.).

About Holst Centre
Holst Centre is an independent open-innovation R&D centre that develops generic technologies for Wireless Autonomous Sensor Technologies and for Flexible Electronics. A key feature of Holst Centre is its partnership model with industry and academia around shared roadmaps and programs. It is this kind of cross-fertilization that enables Holst Centre to tune its scientific strategy to industrial needs. Holst Centre was set up in 2005 by imec (Flanders, Belgium) and TNO (The Netherlands) with support from the Dutch Ministry of Economic Affairs and the Government of Flanders. It is named after Gilles Holst, a Dutch pioneer in Research and Development and first director of Philips Research. Located on High Tech Campus Eindhoven, Holst Centre benefits from the state-of-the-art on-site facilities. Holst Centre has over 170 employees from around 25 nationalities and a commitment from over 30 industrial partners.
www.holstcentre.com


About NXP Semiconductors
NXP Semiconductors N.V. (Nasdaq: NXPI) provides High Performance Mixed Signal and Standard Product solutions that leverage its leading RF, Analog, Power Management, Interface, Security and Digital Processing expertise. These innovations are used in a wide range of automotive, identification, wireless infrastructure, lighting, industrial, mobile, consumer and computing applications. A global semiconductor company with operations in more than 25 countries, NXP posted revenue of $4.4 billion in 2010. For more information isit www.nxp.com.

For more information, please click here

Contacts:
imec
Katrien Marent
Director
External Communications
T: +32 16 28 18 80
Mobile: +32 474 30 28 66


Holst Centre
Koen Snoeckx
communication manager
T: +31 (0)40 40 20 561

Copyright © IMEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Nanomedicine

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Sensors

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Events/Classes

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project