Home > Press > Detecting lethal diseases with rust and sand
Abstract:
The next big thing in medical diagnostics could be minutes particles of rust, iron oxide, coated with the material from which sand is formed, silicon dioxide. These magnetic nanoparticles, a mere 29 to 230 nanometers across, can be used to trap antibodies to the virus that causes cervical cancer and to the bacteria that causes potentially lethal diarrhea.
According to scientists in Vietnam, it is relatively straightforward to immobilize on nanoparticles, synthetic or monoclonal antibodies that respond to the human papilloma virus, HPV18, and the toxic gut microbe Escherichia coli O157:H7. Once trapped in this way the antibodies can be exposed to a potentially contaminated sample. If pathogen particles are present some will stick to the antibodies and this change can then be detected by a conventional test, or assay. Conventional techniques without the benefit of nanoparticles can be accurate, but the magnetic nanoparticles improve the limits of detection by allowing just these particles to be separated from the sample before carrying out the assay so that residual cells and other substances do not interfere with the test.
E. coli could be detected if it is present in a sample at much lower numbers of bacterial cells than normal allowing contamination to be traced back to source with potentially much greater precision and faster. The improved detection limit for the presence of HPV18 in cells of the cervix could offer a way to screen for cancer of this tissue that reveals problems sooner than standard screening tests and so improve the chances of successful treatment for cervical cancer.
Tran Hoang Hai of the Ho Chi Minh City Institute of Physics and colleagues explain how cervical cancer is the second most common cancer after breast cancer in women worldwide, but the conventional enzyme-linked immunosorbent assay (ELISA) diagnosis does not reveal the presence of cancerous cells at the very earliest stage. The magnetic nanoparticle approach could remedy this situation. Similarly, E. coli O157:H7 is an increasingly common cause of severe diarrhea, which can also lead to kidney failure and sometimes death. Infection spreads very quickly through ingestion of contaminated material, whether food or fecal matter, so a rapid test that can spot contamination early is essential for halting the spread of the disease.
"Immobilising of anti-HPV18 and E. coli O157:H7 antibodies on magnetic silica-coated Fe3O4 for early diagnosis of cervical cancer and diarrhea" in Int. J. Nanotechnology, 2011, 8, 383-398
####
For more information, please click here
Contacts:
Tran Hoang Hai
Copyright © Inderscience Publishers
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Possible Futures
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Nanomedicine
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Nanobiotechnology
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |