Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Detecting lethal diseases with rust and sand

Abstract:
The next big thing in medical diagnostics could be minutes particles of rust, iron oxide, coated with the material from which sand is formed, silicon dioxide. These magnetic nanoparticles, a mere 29 to 230 nanometers across, can be used to trap antibodies to the virus that causes cervical cancer and to the bacteria that causes potentially lethal diarrhea.

Detecting lethal diseases with rust and sand

Vietnam | Posted on February 1st, 2011

According to scientists in Vietnam, it is relatively straightforward to immobilize on nanoparticles, synthetic or monoclonal antibodies that respond to the human papilloma virus, HPV18, and the toxic gut microbe Escherichia coli O157:H7. Once trapped in this way the antibodies can be exposed to a potentially contaminated sample. If pathogen particles are present some will stick to the antibodies and this change can then be detected by a conventional test, or assay. Conventional techniques without the benefit of nanoparticles can be accurate, but the magnetic nanoparticles improve the limits of detection by allowing just these particles to be separated from the sample before carrying out the assay so that residual cells and other substances do not interfere with the test.

E. coli could be detected if it is present in a sample at much lower numbers of bacterial cells than normal allowing contamination to be traced back to source with potentially much greater precision and faster. The improved detection limit for the presence of HPV18 in cells of the cervix could offer a way to screen for cancer of this tissue that reveals problems sooner than standard screening tests and so improve the chances of successful treatment for cervical cancer.

Tran Hoang Hai of the Ho Chi Minh City Institute of Physics and colleagues explain how cervical cancer is the second most common cancer after breast cancer in women worldwide, but the conventional enzyme-linked immunosorbent assay (ELISA) diagnosis does not reveal the presence of cancerous cells at the very earliest stage. The magnetic nanoparticle approach could remedy this situation. Similarly, E. coli O157:H7 is an increasingly common cause of severe diarrhea, which can also lead to kidney failure and sometimes death. Infection spreads very quickly through ingestion of contaminated material, whether food or fecal matter, so a rapid test that can spot contamination early is essential for halting the spread of the disease.

"Immobilising of anti-HPV18 and E. coli O157:H7 antibodies on magnetic silica-coated Fe3O4 for early diagnosis of cervical cancer and diarrhea" in Int. J. Nanotechnology, 2011, 8, 383-398

####

For more information, please click here

Contacts:
Tran Hoang Hai

Copyright © Inderscience Publishers

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project