Home > Press > Early tests find nanoshell therapy effective against brain cancer
![]() |
Gold Nanoshell. Credit Rice University. |
Abstract:
Rice bioengineers, Baylor College of Medicine and Texas Children's physician-scientists zap tumors with light-activated nanoparticles
Rice University bioengineers and physician-scientists at Baylor College of Medicine and Texas Children's Hospital have successfully destroyed tumors of human brain cancer cells in the first animal tests of a minimally invasive treatment that zaps glioma tumors with heat. The tests involved nanoshells, light-activated nanoparticles that are designed to destroy tumors with heat and avoid the unwanted side effects of drug and radiation therapies.
The results of the new study are available online in the Journal of Neuro-Oncology. The researchers reported that more than half of the animals that received the nanoshell treatment for glioma tumors had no signs of cancer more than three months after treatment.
"This first round of in vivo animal tests suggests that photothermal therapy with nanoshells may one day be a viable option for glioma patients," said study co-author Jennifer West, the Isabel C. Cameron Professor of Bioengineering at Rice and chair of Rice's Department of Bioengineering. West cautioned that follow-up work in the laboratory is needed before any human testing of the therapy can begin. She said human clinical trials of nanoshell phototherapy for glioma are likely at least a year away.
Glioma is among the most aggressive and difficult-to-treat of all brain cancers. Fewer than five percent of glioma patients survive beyond five years. The disease is particularly difficult to treat because glioma tumors are often highly invasive and inoperable.
Study co-authors include pediatric oncologist Susan Blaney, deputy director of Texas Children's Cancer Center and Baylor College of Medicine professor and vice chair for research in the department of pediatrics, and Rebekah Drezek, professor in bioengineering at Rice. West, Blaney, Drezek and colleagues tested mice with abdominal tumors of human glioma cells. The researchers injected the mice with nanoshells and waited 24 hours for the nanoparticles to accumulate in the tumors. A laser of near-infrared light -- which is harmless to healthy tissue -- was shined at the tumor for three minutes. The nanoshells converted the laser light into tumor-killing heat. All seven animals that received the nanoshell treatment responded, but cancer returned in three. The other four remained cancer-free 90 days after treatment.
"The results of this study are encouraging, and we are cautiously optimistic that this process may bring us closer to finding a cure for glioma," said Blaney, also associate director for clinical research at Baylor College of Medicine's Dan L. Duncan Cancer Center and co-director of The Institute for Clinical and Translational Research. "This is very exciting, especially given the poor prognosis of the disease and the importance of finding brain tumor treatment alternatives that have minimal side effects."
Gold nanoshells, which were invented by Rice researcher Naomi Halas in the mid-1990s, are smaller than red blood cells. Nanoshells are like tiny malted milk balls that are coated with gold rather than chocolate. Their core is nonconducting, and by varying the size of the core and thickness of the shell, researchers can tune them to respond to different wavelengths of light.
Houston-based biomedical firm Nanospectra Biosciences, which holds the license for medical use of Rice's nanoshell technology, began the first human clinical trial of nanoshell phototherapy in 2008.
West, a co-founder and director of Nanospectra Biosciences, said the new glioma study is part of a larger ongoing effort within the Texas Medical Center to adapt nanoshell phototherapy for use against a variety of cancers. Researchers at Rice, Texas Children's Hospital, M.D. Anderson Cancer Center, Baylor College of Medicine and other institutions are working to develop nanoshell-based treatments for prostate cancer and pancreatic cancer.
The glioma study was funded by the National Science Foundation, the National Institutes of Health and Hope Street Kids.
The study is available at: www.springerlink.com/content/j3n862x12l246708/
####
About Rice University
Located in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. A Tier One research university known for its "unconventional wisdom," Rice has schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and offers its 3,485 undergraduates and 2,275 graduate students a wide range of majors. Rice has the sixth-largest endowment per student among American private research universities and is rated No. 4 for “best value” among private universities by Kiplinger’s Personal Finance. Its undergraduate student-to-faculty ratio is less than 6-to-1. With a residential college system that builds close-knit and diverse communities and collaborative culture, Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review.
For more information, please click here
Contacts:
David Ruth
713-348-6327
Jade Boyd
713-348-6778
Copyright © Rice University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Govt.-Legislation/Regulation/Funding/Policy
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Possible Futures
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Nanomedicine
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Nanobiotechnology
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |