Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Bold Medicine, Golden Innovation

Xenia Kachur, a graduate student in the Biomedical Engineering Graduate Interdisciplinary Program at the University of Arizona, is working on methods to deliver chemotherapeutic drugs to cancer tissues without harming healthy body cells. Photo credit: Beatriz Verdugo/UANews
Xenia Kachur, a graduate student in the Biomedical Engineering Graduate Interdisciplinary Program at the University of Arizona, is working on methods to deliver chemotherapeutic drugs to cancer tissues without harming healthy body cells. Photo credit: Beatriz Verdugo/UANews

Abstract:
One day, building on the bold work being done by Marek Romanowski and his students, those suffering cancer may be able to receive effective chemotherapy treatment, confident that they will not have to endure the side effects. To a patient facing such treatments, such confidence will be as good as gold.

Bold Medicine, Golden Innovation

Tucson, AZ | Posted on January 31st, 2011

The upside of chemotherapy is that it attacks cancer cells and kills them. The downside - and a steep downside it is - is that it is composed of highly toxic compounds that attack other cells of the body, too, resulting in any number of harmful side effects, from anemia to hair loss to nausea and vomiting.

The question concerning researchers is how do we deliver chemotherapy drugs to the harmful cells and leave the healthy cells alone?

Marek Romanowski, Ph.D. associate professor of biomedical engineering at the UA College of Engineering and member of the BIO5 Institute and the Arizona Cancer Center, and his team might be on to an answer. In a paper authored by primary investigator Sarah Leung, along with Xenia Kachur, Michael Bobnick and Dr. Romanowski, Leung describes an idea that is literally golden.

Chemotherapy drugs are sometimes delivered via microscopic capsules called liposomes made of organic lipids already present in cells. These lipid casings, used in a technique called liposomal therapy, do two things. First, they allow the drugs to more effectively penetrate into cancer cells. At the same time, they keep the body's immune system from eliminating the drugs before they can do their jobs.

The problem is that, as the liposomes degrade, the drugs are potentially released indiscriminately throughout the body. So, how can we force these capsules to release their contents only around those unhealthy tumor cells?

Romanowski and his team are experimenting by coating liposomes with gold, an element which has the property of converting infrared light into heat.

"The heat causes the liposome to become leaky, and then whatever's really concentrated inside can diffuse out through the liposome," says Kachur, a third-year graduate student in the Biomedical Engineering Graduate Interdisciplinary Program.

The idea works because infrared light has the ability to penetrate deeply through the body.

"Once you know where the tumors are, you can go ahead and point your light source toward those areas. Whatever else is left will leave the body or may be slowly released, but not to as high or as toxic of levels as it would be if you just injected the drug systemically," said Leung, a fourth-year graduate student.

One last bonus to the proposed innovation is that the kidneys can naturally filter and eliminate the biodegraded gold nanostructures from the body.

If successful, the gold-coated liposomes being developed at the UA could offer a new way to target delivery of drugs to cancerous regions of the body, non-invasively trigger the drugs' release using infrared light, and provide a way for the body to naturally eliminate the toxic byproducts.

One day, building on the bold work being done by Marek Romanowski and his students, those suffering cancer may be able to receive effective chemotherapy treatment, confident that they will not have to endure the side effects. To a patient facing such treatments, such confidence will be as good as gold.

The paper, "Wavelength-selective Light-induced Release from Plasmon Resonant Liposomes," will appear in the journal Advanced Functional Materials. Learn more about the Department of Biomedical Engineering at bme.engr.arizona.edu/.

####

For more information, please click here

Copyright © University of Arizona

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project