Home > Press > New 3D tracking microscope allows scientists to follow individual molecules in live cells
Abstract:
Scientists with the Center for Integrated Nanotechnologies have developed a 3D tracking microscope to follow three-dimensional movement of individual protein molecules inside live cells.
In an early demonstration, this instrument was used to follow three-dimensional dynamics of key proteins involved in the human allergic response and associated biological signals.
The microscope system simultaneously samples four spots surrounding the molecule under scrutiny and tracks both its spatial and temporal dynamics. To facilitate such tracking, these important signaling molecules are labeled with quantum dots, tiny glowing nanocrystals.
The system enjoys several advantages over other approaches to 3D molecular tracking:
* an increased tracking range that enables detection of biomolecular motion throughout the entire volume of many mammalian cells
* substantially lower damage to the cell in which the molecules reside
* the ability to perform time-resolved spectroscopy on the molecules being tracked.
The Center for Integrated Nanotechnologies is a user facility operated jointly by Los Alamos National Laboratory and Sandia National Laboratories for the U.S. Department of Energy's Office of Basic Energy Sciences. The 3D tracking microscope team is led by Jim Werner and includes Peter Goodwin, Guillaume Lessard, and Nathan Wells.
Werner's work on an earlier version of this technology, the world's first confocal microscope capable of following the 3D motion of nanometer-sized objects, earned a 2008 R&D 100 award.
Funding for the studies in live cells is from the National Institutes of Health.
####
For more information, please click here
Contacts:
Jeff Berger
Copyright © Los Alamos National Laboratory
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Govt.-Legislation/Regulation/Funding/Policy
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Nanomedicine
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Tools
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
Nanobiotechnology
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |