Home > Press > Tracking signs of better catalysts
![]() |
A representation of a volcano graph. SUNCAT uses volcano graphs to determine where important chemical properties coincide. A substance with those properties is a good candidate for a catalyst. (Image courtesy Frank Abild-Pederson.) |
Abstract:
SLAC researchers have taken a big step toward making useful catalysts easier to find or create—processes that have previously relied on trial and error.
by Lori Ann White
As explained yesterday in the Proceedings of the National Academy of Sciences, SLAC researchers at the Center for Sustainable Energy through Catalysis, or SUNCAT, are using advances in surface chemistry research to better describe the intrinsically complex process of catalysis, a type of chemical reaction that occurs at the surfaces of materials.
In catalysis, a chemical called a catalyst helps speed chemical reactions between other molecules, without itself being changed. Catalysis is the basis for most important industrial chemical processes, used for years in everything from refining oil to producing plastic or fertilizers. It is also the basis for some of the crucial processes needed to turn sunlight into fuels and other chemicals. However, the theory to explain just why certain substances make chemical reactions happen faster or more efficiently—and, more importantly, to predict even better catalysts—has lagged behind experimental efforts. The researchers at SUNCAT want to use an approach called density functional theory to change that.
"[The paper] is really almost a program for the theory portion of catalysis research at SLAC and Stanford," said Jens Nørskov, director of SUNCAT and the paper's lead author. The paper does not shy away from the challenges such research still faces, he added, "but it illustrates where our methods can help." The methods of density functional theory involve identifying important trends for classes of catalysts and chemical reactions; those trends can then be used to predict new and better catalysts. In this approach, the electrons that are key to forming and dissolving chemical bonds are treated as interacting clouds of varying densities, and a descriptor, or more general way to describe their behavior, is developed. Thus far, density functional theory has been applied successfully for an important class of catalysts called transition metals.
"Our approach has been to try to reduce the number of parameters we need to describe each specific reaction," explained SUNCAT researcher and co-author of the paper Frank Abild-Pedersen. Such parameters include the structures of the substances involved, any impurities they contain, and what intermediate products are created during a process—to name only a few. "Some groups do lots and lots of calculations. We want to simplify."
In the case of the transition metals, such simplification narrowed down a complex process to two important descriptors. This, for instance, enabled the researchers to identify nickel-iron catalysts as a cheaper, better alternative to nickel alone—a catalyst commonly used in a process called catalytic methanation, which produces methane for synthetic fuels.
"You can always try to understand everything completely," said co-author and SUNCAT researcher Felix Studt, "but to predict something new you need a simple model." Despite the simplifications, Nørskov's team still needs to perform a certain amount of number crunching to pin down the behavior of a representative member of a class of catalysts before any descriptors can be developed.
"We had to develop an understanding based on some transition metals to be able to predict how the rest would react," Studt explained. An important consideration is to find a descriptor that is easy to calculate.
All three scientists agree that the transition metals are a simple example. In contrast, "Oxides, nitrides, sulfides—density functional theory doesn't describe them as well," Abild-Pedersen said. The team is working to refine not only their descriptors, but how they develop them, to address tougher cases.
"We're deriving an approach," Studt said. "We start with finding new catalysts for easy classes, and in the process we refine and extend our approach."
####
For more information, please click here
Copyright © SLAC National Accelerator Laboratory
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Chemistry
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Energy
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |