Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Graphene electrodes for organic solar cells

The structure of graphene, a flexible material made of carbon atoms arranged in a layer just one atom thick, is represented in this diagram. Graphic: Christine Daniloff
The structure of graphene, a flexible material made of carbon atoms arranged in a layer just one atom thick, is represented in this diagram. Graphic: Christine Daniloff

Abstract:
Researchers identify technique that could make a new kind of solar photovoltaic panel practical.

By David L. Chandler, MIT News Office

Graphene electrodes for organic solar cells

Cambridge, MA | Posted on January 7th, 2011

A promising approach for making solar cells that are inexpensive, lightweight and flexible is to use organic (that is, carbon-containing) compounds instead of expensive, highly purified silicon. But one stubborn problem has slowed the development of such cells: Researchers have had a hard time coming up with appropriate materials for the electrodes to carry the current to and from the cells. Specifically, it has been hard to make electrodes using materials that can match the organic cells' flexibility, transparency and low cost.

The standard material used so far for these electrodes is indium-tin-oxide, or ITO. But indium is expensive and relatively rare, so the search has been on for a suitable replacement. Now, a team of MIT researchers has come up with a practical way of using a possible substitute made from inexpensive and ubiquitous carbon. The proposed material is graphene, a form of carbon in which the atoms form a flat sheet just one atom thick, arranged in a chicken-wire-like formation.

An analysis of how to use graphene as an electrode for such solar cells was published on Dec. 17 in the journal Nanotechnology, in a paper by MIT professors Jing Kong and Vladimir Bulović along with two of their students and a postdoctoral researcher.

Graphene is transparent, so that electrodes made from it can be applied to the transparent organic solar cells without blocking any of the incoming light. In addition, it is flexible, like the organic solar cells themselves, so it could be part of installations that require the panel to follow the contours of a structure, such as a patterned roof. ITO, by contrast, is stiff and brittle.

The biggest problem with getting graphene to work as an electrode for organic solar cells has been getting the material to adhere to the panel. Graphene repels water, so typical procedures for producing an electrode on the surface by depositing the material from a solution won't work.

The team tried a variety of approaches to alter the surface properties of the cell or to use solutions other than water to deposit the carbon on the surface, but none of these performed well, Kong says. But then they found that "doping" the surface — that is, introducing a set of impurities into the surface — changed the way it behaved, and allowed the graphene to bond tightly. As a bonus, it turned out the doping also improved the material's electrical conductivity.

While the specific characteristics of the graphene electrode differ from those of the ITO it would replace, its overall performance in a solar cell is very similar, Kong says. And the flexibility and light weight of organic solar cells with graphene electrodes could open up a variety of different applications that would not be possible with today's conventional silicon-based solar panels, she says. For example, because of their transparency they could be applied directly to windows without blocking the view, and they could be applied to irregular wall or rooftop surfaces. In addition, they could be stacked on top of other solar panels, increasing the amount of power generated from a given area. And they could even be folded or rolled up for easy transportation.

While this research looked at how to adapt graphene to replace one of the two electrodes on a solar panel, Kong and her co-workers are now trying to adapt it to the other electrode as well. In addition, widespread use of this technology will require new techniques for large-scale manufacturing of graphene — an area of very active research. The ongoing work has been funded by the Eni-MIT Alliance Solar Frontiers Center and an NSF research fellowship.

Peter Peumans, an assistant professor of electrical engineering at Stanford University, who was not involved in this study, says organic solar cells will probably become practical only with the development of transparent electrode technology that is both cheaper and more robust than conventional metal oxides. Other materials are being studied as possible substitutes, he says, but this work represents "very important progress" toward making graphene a credible replacement transparent electrode.

"Other groups had already shown that graphene exhibits good combinations of transparency and sheet resistance, but no one was able to achieve a performance with graphene electrodes that matches that of devices on conventional metal oxide (ITO) electrodes," Peumans says. "This work is a substantial push toward making graphene a leading candidate."

####

For more information, please click here

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Govt.-Legislation/Regulation/Funding/Policy

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Energy

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project