Home > Press > Impregnating plastics with carbon dioxide
![]() |
This propeller was dyed yellow in only five minutes at 90 degrees Celsius and 200 bar. At this pressure, the yellow dye powder dissolved in the CO2 which transferred it into the plastic. (© Fraunhofer UMSICHT) |
Abstract:
Everyone has heard that carbon dioxide is responsible for global warming. But the gas also has some positive characteristics. Researchers are now impregnating plastics with compressed CO2 in a process that could lead to new applications ranging from colored contact lenses to bacteria-resistant door handles.
CO2 is more than just a waste product. In fact, it has a variety of uses: the chemical industry makes use of this colorless gas to produce urea, methanol and salicylic acid. Urea is a fertilizer, methanol is a fuel additive, and salicylic acid is an ingredient in aspirin.
Researchers at the Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT in Oberhausen are pursuing a new idea by testing how carbon dioxide can be used to impregnate plastics. At a temperature of 30.1 degrees Celsius and a pressure of 73.8 bar, CO2 goes into a supercritical state that gives the gas solvent-like properties. In this state, it can be introduced into polymers, or act as a "carrier" in which dyes, additives, medical compounds and other substances can be dissolved. "We pump liquid carbon dioxide into a high-pressure container with the plastic components that are to be impregnated, then steadily increase the temperature and the pressure until the gas reaches the supercritical state. When that state is reached, we increase the pressure further. At 170 bar, pigment in powder form dissolves completely in the CO2 and then diffuses with the gas into the plastic. The whole process only takes a few minutes. When the container is opened, the gas escapes through the surface of the polymer but the pigment stays behind and cannot subsequently be wiped off," explains Dipl.-Ing. Manfred Renner, a scientist at Fraunhofer UMSICHT.
In tests, the researchers have even managed to impregnate polycarbonate with nanoparticles that give it antibacterial properties. E-coli bacteria, placed on the plastic's surface in the institute's own high-pressure laboratory, were killed off completely - a useful function that could be applied to door handles impregnated with the same nanoparticles. Tests conducted with silica and with the anti-inflammatory active pharmaceutical ingredient flurbiprofen were also successful. "Our process is suitable for impregnating partially crystalline and amorphous polymers such as nylon, TPE, TPU, PP and polycarbonate," states Renner, "but it cannot be applied to crystalline polymers."
The process holds enormous potential, as carbon dioxide is non-flammable, non-toxic and inexpensive. Whilst it shows solvent-like properties, it does not have the same harmful effects on health and on the environment as the solvents that are used in paints, for example. Painted surfaces are also easily damaged and are not scratch-resistant. Conventional processes for impregnating plastics and giving them new functions have numerous drawbacks. Injection molding, for instance, does not permit the introduction of heat-sensitive substances such as fire retardants or UV stabilizers. Many dyes change color; purple turns black. "Our method allows us to customize high-value plastic components and lifestyle products such as mobile phone shells. The best about it is that the color, additive or active ingredient is introduced into layers near the surface at temperatures far below the material's melting point, in an environ mentally friendly manner that does away with the need for aggressive solvents," says Renner. The process could, for example, be used to dye contact lenses - and lenses could even be enriched with pharmaceutical compounds that would then be slowly released to the eye throughout the day, representing an alternative to repeated applications of eye drops for the treatment of glaucoma. According to the scientist, this new impregnation method is suitable for a broad range of new applications.
####
For more information, please click here
Copyright © Fraunhofer Institute
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Materials/Metamaterials/Magnetoresistance
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |