Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > UGA researchers develop rapid diagnostic test for common type of pneumonia

Abstract:
University of Georgia researchers have developed a technique that can diagnose a common type of pneumonia within minutes, potentially replacing existing tests that can take several days for results.

By Kirk McAlpin

UGA researchers develop rapid diagnostic test for common type of pneumonia

Athens, GA | Posted on December 15th, 2010

The researchers, whose findings are detailed online in the journal PLoS ONE, detected Mycoplasma pneumoniae, which causes atypical or "walking pneumonia," in true clinical samples with over 97 percent accuracy using a recently-developed nanotechnology-based platform.

"If you can make a positive identification from a 10-minute test, then appropriate antibiotics can be prescribed, limiting both the consequences in that patient and the likelihood that it will spread to others," said lead-author Duncan Krause, a professor in the department of microbiology in the UGA Franklin College of Arts and Sciences.

Krause and his colleagues built upon an existing technology called surface-enhanced Raman spectroscopy, which works by detecting spectral signatures of a near-infrared laser as it scatters off a biological specimen. They were able to enhance the Raman signal by using silver nanorod arrays to detect the tiny bacteria in throat swab specimens.

Krause, who also directs the interdisciplinary UGA Faculty of Infectious Diseases, compared the nanorod array developed by collaborator Yiping Zhao, director of the UGA Nanoscale Science and Engineering Center, to a brush with densely packed bristles, where each of the tiny silver rods extends out at a specific angle. The sample, such as bacteria from a throat swab, penetrates among the bristles, where the spectral signature produced by the laser is amplified and then analyzed by a computer program.

Krause noted that infections due to M. pneumoniae are very common yet difficult to diagnose. The bacterium is a major cause of respiratory disease in humans and the leading cause of pneumonia in older children and young adults.

"Walking pneumonia feels like a bad chest cold that will not go away," he explained. "It can persist for weeks and even months and can cause permanent damage to the lungs if not diagnosed promptly. A delay in diagnosis extends the likelihood for complications as well as continued transmission of the infection to others."

Krause said the device can be reduced to a size that could fit in a briefcase, although their testing is currently done only in a laboratory setting. "Our hope is that when we begin to explore the capabilities of this technology, it can be applied in point-of-care testing," he added. "Then the impact becomes truly significant."

Krause hopes the combined efforts of the research specialists in nanotechnology and infectious disease will eventually be able to determine if the technique is effective in detecting other pathogens in clinical samples. "We need to do a thorough job with mycoplasmas first," said Krause. "Then we can go to other clinical samples and ask the same questions with other infectious agents."

Funding for the research was provided by the U.S. Army Research Laboratory, the National Science Foundation and the Georgia Research Alliance.

For more information on UGA department of microbiology, see www.uga.edu/mib/

For further information on UGA Nanoscale Science and Engineering Center, see nano.uga.edu/

####

For more information, please click here

Contacts:
Writer:
Kirk McAlpin
706/542-8078


Duncan Krause
706/542-2671

Copyright © University of Georgia

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project