Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > UCLA bioengineers discover how particles self-assemble in flowing fluids

A self-assembled lattice of 10-micrometer diameter particles flowing through a microfluidic channel.
A self-assembled lattice of 10-micrometer diameter particles flowing through a microfluidic channel.

Abstract:
Bioengineers at the UCLA Henry Samueli School of Engineering and Applied Science have been exploring a unique phenomenon whereby randomly dispersed microparticles self-assemble into a highly organized structure as they flow through microscale channels.

By Matthew Chin and Wileen Wong Kromhout

UCLA bioengineers discover how particles self-assemble in flowing fluids

Los Angeles, CA | Posted on December 15th, 2010

From atomic crystals to spiral galaxies, self-assembly is ubiquitous in nature. In biological processes, self-assembly at the molecular level is particularly prevalent.

Phospholipids, for example, will self-assemble into a bilayer to form a cell membrane, and actin, a protein that supports and shapes a cell's structure, continuously self-assembles and disassembles during cell movement.

Bioengineers at the UCLA Henry Samueli School of Engineering and Applied Science have been exploring a unique phenomenon whereby randomly dispersed microparticles self-assemble into a highly organized structure as they flow through microscale channels.

This self-assembly behavior was unexpected, the researchers said, for such a simple system containing only particles, fluid and a conduit through which these elements flow. The particles formed lattice-like structures due to a unique combination of hydrodynamic interactions.

The research, published online today in the journal Proceedings of the National Academy of Sciences, was led by UCLA postdoctoral scholar Wonhee Lee and UCLA assistant professor of bioengineering Dino Di Carlo.

The research team discovered the mechanism that leads to this self-assembly behavior through a series of careful experiments and numerical simulations. They found that continuous disturbance of the fluid induced by each flowing and rotating particle drives neighboring particles away, while migration of particles to localized streams due to the momentum of the fluid acts to stabilize the spacing between particles at a finite distance. In essence, the combination of repulsion and localization leads to an organized structure.

Once they understood the mechanism, the team developed microchannels that allowed for "tuning" of the spatial frequency of particles within an organized particle train. They found that by simply adding short regions of expanded channel width, the particles could be induced to self-assemble into different structures in a controllable and potentially programmable way.

"Programmable control of flowing microscale particles may be important in opening up new capabilities in biomedicine, materials synthesis and computation, similar to how improved control of flowing electrons has enabled a revolution in computing and communication," Di Carlo said.

For example, controlling the positions of microscale bioparticles, such as cells in flowing channels, is important for the operation of blood analysis and counting diagnostic systems. In addition, improving the uniformity of cell concentrations entering the microscale volume of a print head can enable burgeoning fields such as "tissue printing," in which single cells in a polymer ink are sequentially positioned to form a functional tissue architecture, such as the cylindrical lumen of a blood vessel.

More complete control of lattices of particles may also allow tunable manufacturing of optical or acoustic metamaterials that interact uniquely with light and sound waves based on the arrangement of the embedded particles, the researchers said.

####

About UCLA Henry Samueli School of Engineering and Applied Science
The UCLA Henry Samueli School of Engineering and Applied Science, established in 1945, offers 28 academic and professional degree programs and has an enrollment of almost 5,000 students. The school's distinguished faculty are leading research to address many of the critical challenges of the 21st century, including renewable energy, clean water, health care, wireless sensing and networking, and cyber-security. Ranked among the top 10 engineering schools at public universities nationwide, UCLA Engineering is home to seven multimillion-dollar interdisciplinary research centers in wireless sensor systems, nanoelectronics, nanomedicine, renewable energy, customized computing, and the smart grid, all funded by federal and private agencies.

For more information, please click here

Contacts:
Media Contacts
Matthew Chin
310-206-0680


Wileen Wong Kromhout
(310) 206-0540

Copyright © UCLA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Self Assembly

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project