Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Fitting a biological nanopore into a man-made one, new ways to analyze DNA

Artistic rendering of the formation of hybrid pores by the directed insertion of the biological protein pore alpha hemolysin (pink) into solid-state nanopores (holes in the green bottom layer). An applied electric field drives a double-stranded DNA molecule (blue, left) into the hole, which subsequently drags the pink hemolysin protein into position. Once assembled, these hybrid nanopores can be used to pull single-strand DNA (blue, center) through, for analysis and sequencing. Image courtesy Cees Dekker lab TU Delft / Tremani
Artistic rendering of the formation of hybrid pores by the directed insertion of the biological protein pore alpha hemolysin (pink) into solid-state nanopores (holes in the green bottom layer). An applied electric field drives a double-stranded DNA molecule (blue, left) into the hole, which subsequently drags the pink hemolysin protein into position. Once assembled, these hybrid nanopores can be used to pull single-strand DNA (blue, center) through, for analysis and sequencing. Image courtesy Cees Dekker lab TU Delft / Tremani

Abstract:
Researchers at Delft University of Technology and Oxford University announce a new type of nanopore device that could help in developing fast and cheap genetic analysis. In the journal Nature Nanotechnology (November 28), they report on a novel method that combines man-made and biological materials to result in a tiny hole on a chip, which is able to measure and analyze single DNA molecules.

Fitting a biological nanopore into a man-made one, new ways to analyze DNA

The Netherlands | Posted on November 29th, 2010

Biological

"The first mapping of the human genome - where the content of the human DNA was read off ('sequenced') - was completed in 2003 and it cost an estimated 3 billion US dollars. Imagine if that cost could drop to a level of a few 100 euro, where everyone could have their own personal genome sequenced. That would allow doctors to diagnose diseases and treat them before any symptoms arise." Professor Cees Dekker of the Kavli Institute of Nanoscience at Delft explains.

One promising device is called a nanopore: a minute hole that can be used to 'read' information from a single molecule of DNA as it threads through the hole.

New research by Dekker's group in collaboration with prof. Hagan Bayley of Oxford University, has now demonstrated a new, much more robust type of nanopore device. It combines biological and artificial building blocks.

Fragile

Dekker: 'Nanopores are already used for DNA analysis by inserting naturally occurring, pore-forming proteins into a liquid-like membrane made of lipids. DNA molecules can be pulled individually through the pore by applying an electrical voltage across it, and analyzed in much the same way that music is read from an old cassette tape as it is threaded through a player. One aspect that makes this biological technology especially difficult, however, is the reliance on the fragile lipid support layer. This new hybrid approach is much more robust and suitable to integrate nanopores into devices.'

Putting proteins onto a silicon chip

The new research, performed chiefly by lead author dr. Adam Hall, now demonstrates a simple method to implant the pore-forming proteins into a robust layer in a silicon chip. Essentially, an individual protein is attached to a larger piece of DNA, which is then pulled through a pre-made opening in a silicon nitride membrane. When the DNA molecule threads through the hole, it pulls the pore-forming protein behind it, eventually lodging it in the opening and creating a strong, chip-based system that is tailor-made for arrays and device applications. The researchers have shown that the hybrid device is fully functional and can be used to detect DNA molecules.

Article:
Title: Hybrid pore formation by directed insertion of alpha hemolysin into solid-state nanopores
Authors: Adam R. Hall1, Andrew Scott1, Dvir Rotem2, Kunal K. Mehta2, Hagan Bayley2, and Cees Dekker (*)

Address:
(*): Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands; 2: Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, OX1 3TA, Oxford, UK
Journal: Nature Nanotechnology. Advance Online Publication (AOP)

PDF: A pdf of the paper can be received upon request:

####

For more information, please click here

Contacts:
Cees Dekker

Copyright © Delft University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project