Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Iran's Nano Scientists Improve Fricative Properties of Aluminum Alloys

Abstract:
Iranian researchers at Isfahan University of Technology improved the fricative properties of mostly-used aluminum alloys through a novel method by using nanocomposites.

Iran's Nano Scientists Improve Fricative Properties of Aluminum Alloys

Iran | Posted on November 23rd, 2010

"Al2024 alloy is known as one of the most used aluminum alloys, especially in aerospace industry. However, it does not have desirable fricative properties just like other aluminum alloys. We improved the properties of the alloy by creating a nanocomposite layer on its surface," Babak Zahmatkesh, one of the researchers, told the news service of Iran Nanotechnology Initiative Council's website.

After preliminary studies, the researchers designed an appropriate tool for the friction stir process and optimized the parameters of the process. Then, they produced Al-10% Al2O3 nanocomposite powder through mechanical alloying and applied the powder on the surface of the base metal during a plasma heat spraying process.

The combination of plasma heat spraying process and friction stir process used in this research solves the problems in the previous methods during the coating with strengthening particles.

In the previous methods, there were observed various problems such as severe aggregation, impossibility of the extension of the strengthened zone on the plate surface, non-homogeneity in the thickness of the strengthening layer, formation of pores and limitations in the thickness of the strengthened layer.

"The results show that the strengthening particles have diffused homogeneously into the sub-layer and the average thickness of the nanocomposite layer is 600 micrometers," Eng Zahmatkesh said about the results obtained in the research.

"In addition, the nanocomposite sample has a higher resistance against friction in comparison with the base metal to the extent that the amounts of weight reduction at the end of the friction experiment (1000 m) were 37.7 mg for the base metal and only 4 mg for the nanocomposite sample. The results of micro-resistance test show a noticeable increase in the hardness of nanocomposite compared to that of the base metal," he added.

####

For more information, please click here

Copyright © FARS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Aerospace/Space

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Bridging light and electrons January 12th, 2024

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project