Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Purdue gets $1.5 million for quantum information center

Sabre Kais
Sabre Kais

Abstract:
Purdue University has been awarded $1.5 million to study quantum information science, a new field paving the way for quantum computing - a novel method to process information that is faster, more powerful and more efficient than classical computing.

By Elizabeth K. Gardner

Purdue gets $1.5 million for quantum information center

West Lafayette, IN | Posted on November 22nd, 2010

Purdue University has been awarded $1.5 million to study quantum information science, a new field paving the way for quantum computing - a novel method to process information that is faster, more powerful and more efficient than classical computing.

The National Science Foundation-funded Center for Quantum Information and Computation for Chemistry will focus on the role of quantum information in chemical systems and on developing algorithms for chemical problems that can be solved efficiently using quantum computers.

Sabre Kais, the project's principal investigator, said quantum information science draws on physical science, mathematics, computer science and engineering to understand how certain fundamental laws of physics can be harnessed to improve the acquisition, transmission and processing of information.

"The center will bring together experts in theoretical chemistry and quantum information processing to investigate information techniques used to gain new insights into a variety of chemical processes from bond breaking to photosynthesis," said Kais, who is a professor of chemistry and a researcher in the Birck Nanotechnology Center. "This work will advance our understanding of chemical phenomena and could lead to the realization of quantum computers, which would be capable of performing complex calculations and simulations impossible on today's computers."

Quantum computing aims to use the behavior of atomic and subatomic particles like electrons, protons and photons to create a new way to store and process information. These particles would be turned into quantum bits, or qubits for computing.

While classical computers use transistors that are either "on" or "off" to represent a 1 or 0, qubits offer a third option of being both 1 and 0 at the same time to exponentially increase the number of calculations a computer can run simultaneously.

These particles also have the ability to be put into a state of entanglement, where a change applied to one is instantly reflected by the others, which offers the potential for massive parallel processing.

In the field of chemistry there are calculations that cannot be done through classical computing because it would take years for the computer to run through and evaluate all of the possibilities, Kais said.

"For example, obtaining the exact electronic structure of complex molecules can require running through more than 100 quadrillion configurations," he said. "This is an impossible task on any current computer. We hope to design a quantum algorithm that can be used on a quantum computer to solve this problem in a matter of minutes."

The center also will develop new software tools for the scientific community and will serve as an educational resource through public lectures, new course development, distance education initiatives and K-12 classroom activities.

Partners in the Purdue-based center include Alan Aspuru-Guzik of Harvard University, Kenneth R. Brown of the Georgia Institute of Technology, Daniel A. Lidar of the University of Southern California and Peter J. Love of Haverford College.

The center is funded by the National Science Foundation Centers for Chemical Innovation Program, which supports research centers that can address major, long-term fundamental chemical research challenges that have a high probability of both producing transformative research and leading to innovations.

####

For more information, please click here

Contacts:
Writer
Elizabeth K. Gardner
765-494-2081


Source
Sabre Kais
765-494-5965

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Govt.-Legislation/Regulation/Funding/Policy

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Quantum Computing

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Programmable electron-induced color router array May 14th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Quantum nanoscience

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Programmable electron-induced color router array May 14th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project