Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > UA Polymer Scientists Unpeel Secrets Of Nanohair Adhesion

Fine hairs on the soles of gecko feet allow the lizards to climb vertical surfaces with ease. UA polymer researchers have discovered a synthetic glue (carbon nanotubes) with nearly four times the adhesion power of gecko hairs. Now the scientists reveal why the mimic version offers its remarkable staying power.
Fine hairs on the soles of gecko feet allow the lizards to climb vertical surfaces with ease. UA polymer researchers have discovered a synthetic glue (carbon nanotubes) with nearly four times the adhesion power of gecko hairs. Now the scientists reveal why the mimic version offers its remarkable staying power.

Abstract:
Not long after Dr. Ali Dhinojwala, chairman of The University of Akron Department of Polymer Science, unpeeled the secret (fine, clingy hairs) behind the remarkable adhesion of gecko feet, he and fellow researchers came up with a synthetic replica: carbon nanotubes. Now, five years after that initial discovery, the basis of the success of these nanotubes is published in the October issue of the American Chemical Society's NanoLetters pubs.acs.org/doi/abs/10.1021/nl102398w

UA Polymer Scientists Unpeel Secrets Of Nanohair Adhesion

Akron, OH | Posted on November 20th, 2010

While the story of nanotubes is one of success, not all carbon nanotubes are equal, nor is the individual adhesion performance of each strand, according to Dhinojwala. Although Dhinojwala and UA polymer science graduate student Liehui Ge determined that these 8-nanometer-diameter carbon hairs — each 2,000 times smaller than the diameter of a human hair — adhere powerfully to glass and similar substrates, they furthered their research to learn why some strands have a firmer grip than others.

Findings by the UA scientists, in collaboration with Lijie Ci and Anubha Goyal, researchers with the Department of Mechanical Engineering and Materials Science at Rice University; Rachel Shi, UA Research Experience for Undergraduates (REU) intern; and L. Mahadevan, professor of applied mathematics and professor of organismic and evolutionary biology at Harvard University, reveal that the softer the nanotube, the greater its adhesion.

Using a combination of mechanics, electrical resistance and scanning electron microscopy (SEM) to study the contact between hairs of a large number of vertically aligned carbon nanotubes with glass or silicon substrates, the researchers found that soft nanotubes clasp and curve when pressure is applied, contributing to their adhesive strength.

"We found out that the diameter of the tubes is an important parameter for adhesion because we have to balance the adhesion and bending rigidity of the tubes," Ge says. "Also, if you apply a high pressure, the tubes bend and buckle and make a larger contact area with the surface, which is the reason for higher adhesion."

The dry adhesive, unlike liquid glue counterparts, promises successful use in extreme atmospheric and temperature conditions and in other applications that present challenges.

"The carbon nanotube-based gecko adhesives are going to open up opportunities to using these materials on robots, to climb vertical walls, and could actually be used in outer space (vacuum condition) because these materials stick without any liquid glue," Dhinojwala says.

####

About University of Akron
The University of Akron is the public research university for Northeast Ohio. The Princeton Review listed UA among the “Best in the Midwest” in its 2010 edition of Best Colleges: Region-by-Region. Approximately 29,300 students are enrolled in UA’s 300 associate, bachelor’s, master’s, doctorate and law degree programs and 100 certificate programs at sites in Summit, Wayne, Medina and Holmes counties. For more information, visit

For more information, please click here

Contacts:
Denise Henry
33-972-6477

Copyright © University of Akron

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Aerospace/Space

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

Under pressure - space exploration in our time: Advancing space exploration through diverse collaborations and ethical policies February 16th, 2024

Bridging light and electrons January 12th, 2024

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project