Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > Quantum Computing Reaches for True Power

November 9th, 2010

Quantum Computing Reaches for True Power

Abstract:
Significantly, I.B.M. has reconstituted what had recently been a relatively low-level research effort in quantum computing. I.B.M. is responding to advances made in the past year at Yale University and the University of California, Santa Barbara, that suggest the possibility of quantum computing based on standard microelectronics manufacturing technologies. Both groups layer a superconducting material, either rhenium or niobium, on a semiconductor surface, which when cooled to near absolute zero exhibits quantum behavior.

A fourth technology has been developed by D-Wave Systems, a Canadian computer maker. D-Wave has built a system with more than 50 quantum bits, but it has been greeted skeptically by many researchers who believe that it has not proved true entanglement. Nevertheless, Hartmut Neven, an artificial-intelligence researcher at Google, said the company had received a proposal from D-Wave and NASA's Jet Propulsion Laboratory to develop a quantum computing facility for Google next year based on the D-Wave technology.

Source:
nytimes.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Next-generation quantum communication October 3rd, 2025

"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025

Possible Futures

Researchers demonstrates substrate design principles for scalable superconducting quantum materials: NYU Tandon–Brookhaven National Laboratory study shows that crystalline hafnium oxide substrates offer guidelines for stabilizing the superconducting phase October 3rd, 2025

Gap-controlled infrared absorption spectroscopy for analysis of molecular interfaces: Low-cost spectroscopic approach precisely analyzes interfacial molecular behavior using ATR-IR and advanced data analysis October 3rd, 2025

Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Quantum Computing

Breaking barriers in energy-harvesting using quantum physics: Researchers find a way to overcome conventional thermodynamic limits when converting waste heat into electricity October 3rd, 2025

Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025

Researchers tackle the memory bottleneck stalling quantum computing October 3rd, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project