Home > Press > Graphene rising
Graduate student Muge Acik - Courtesy of Rodolfo Guzman |
Abstract:
Grad student publishes on new material
By Rebecca Gomez
Before her research was published in the Oct. 2010 issue of the scientific journal Nature Materials, before her discovery of a radical new formation of graphene oxide, before she could even conceive of what the data from her experiments was telling her, materials science graduate student Muge Acik had to prove quantum physics wrong.
Acik, more familiar with chemistry than physics, worked with Materials Science Department Head Yves Chabal to observe the unusual behavior of electrons in the experiments.
"The exciting part was that to discover this conformation of graphene oxide, we had to solve how this conformation occurred," Chabal said.
The phenomena couldn't be explained by current physics. It was because of the unique properties of a new material called graphene.
According to the Royal Swedish Academy of Sciences (RASA), who awarded the 2010 Nobel Prize in Physics for the isolation and identification of graphene done by other physicists, graphene is a single layer of carbon just one atom thick. RASA has produced a public information document that states graphene is the strongest, thinnest material known on earth. Not only is it transparent, but it's also an ultra-fast conductor of electrons and heat.
Chabal was granted funding by Nanotech Research Initiative (NRI) and Texas Instruments (TI) to determine if graphene could be modified to supersede silicon-based transistors in creating faster, more powerful microelectronic devices.
"Transistors are very small switches that comprise the basic function of every electronic device. They give you a one or a zero, a yes or a no," Chabal said.
Chabal chose Acik, who had been endowed by a TI Diversity Fellowship, to create a stable attachment of graphene to oxygen that would render the material functional as a transistor.
"Imagine knowing only bicycles and being told to figure out how to use a car," Acik said. "That was graphene for me."
The research required completely new machines to experiment with the nano-scale material, machines that came with digital displays Acik said she was not familiar with. Acik enlisted the help of Natural Science and Engineering Research Laboratory (NSERL) lab assistant and computer engineering senior Rudolfo Guzman to understand the computer side of the experiments.
"At first their research was foreign to me, but I was able to help with any electrical system or computer programming issues in the lab," Guzman said.
The cross-disciplinary team collaborated with materials science professor Kyeongjae Cho and the entire faculty of NSERL to find out exactly what they had created.
"The formation we discovered was functional ether bound at the edges of graphene. This detail may seem mundane, but once discovered it can have great results," Chabal said.
The results as concluded in their Nature Materials article, ‘unusual infrared-absorption mechanism in thermally reduced graphene oxide,' stated this conformation of graphene oxide showed promise in applications of solar panels or thermal-infrared remote sensing (night vision).
Even though the research was driven by creating a graphene based transistor, Chabal said it is common that nanotechnology research will lead to unexpected applications.
He used similar research into microelectronic device applications for carbon nanotubules as an example.
"While people are waiting for the microelectronic devices, they may not know that tennis balls are already being manufactured with carbon nanotubules."
####
For more information, please click here
Copyright © University of Texas at Dallas
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Physics
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Finding quantum order in chaos May 17th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
Quantum nanoscience
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||