Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Rice, TMC team take aim at pancreatic cancer

Abstract:
National Cancer Institute funds preclinical 'theranostic' study

Rice, TMC team take aim at pancreatic cancer

Houston, TX | Posted on October 18th, 2010

Researchers from Rice University's Laboratory for Nanophotonics (LANP), the radiology department at Baylor College of Medicine (BCM) and the University of Texas MD Anderson Cancer Center are preparing to test a combined approach for diagnosing and treating pancreatic cancer with a specially engineered nanoparticle.

The five-year, preclinical testing program will be funded by a newly announced $1.8 million grant from the National Cancer Institute's (NCI) Alliance for Nanotechnology in Cancer program.

"Pancreatic cancer is notoriously difficult to treat, and we hope nanoparticle-based 'theranostics' can change that," said LANP Director Naomi Halas, Rice's Stanley C. Moore Professor in Electrical and Computer Engineering and professor of chemistry and biomedical engineering. "Our nanoparticles are designed to specifically target cancer cells and to function as both diagnostic and therapeutic agents."

Pancreatic cancer is one of the most deadly forms of cancer. Surgery is often the only treatment option, and the five-year, postsurgical survival rate is less than 25 percent.

Halas is the inventor of gold nanoshells, tiny gold-sheathed particles that can harvest light and convert it to heat. She also helped pioneer the use of nanoshells for cancer treatment, and she is the principal investigator on the new NCI grant. The theranostic project team includes co-principal investigators Amit Joshi, assistant professor of radiology at BCM; Sunil Krishnan, associate professor in radiation oncology at MD Anderson; and Peter Nordlander, professor of physics and astronomy at Rice.

Theranostics involve technologies and agents that can diagnose and treat diseases in a single procedure. The theranostic particle that will be tested at Rice, BCM and MD Anderson was invented at LANP.

"A seamless integration of multiple imaging and therapeutic technologies within a single nanoparticle is required to tackle diseases like pancreatic cancer, which often resist conventional therapies," Joshi said.

At the heart of the particle is a nanoshell that can be used to kill cancer cells with heat. The particle can also be tagged with antibodies that allow it to home in on specific types of cancer cells. In addition, the nanoparticle is designed to provide high-resolution images regarding its location in the body and in the tumor. This is accomplished by combining an FDA-cleared dye for fluorescence imaging with an active marker for MRI imaging. These combined capabilities allow researchers to track the nanoparticles throughout the body and even observe their distribution within the tumor before, during and after treatment.

"This level of highly detailed information on nanoparticle location in the body has not been obtainable previously," Halas said.

In the first published tests of the new particle last year, Joshi, Halas and colleagues showed it could be used to simultaneously detect and destroy breast and ovarian cancer cells in cell cultures.

In the NCI study, researchers will test whether the particles can be used to image and treat pancreatic cancer in mice. The tests will investigate how well the particles work as imaging agents -- both in MRI scans and in fluorescent optical scans, how well they target specific cell types, where they go inside the body after testing and treatment and how well they perform as therapeutic agents. In addition, Krishnan's lab at MD Anderson has a particular interest in testing the particles to see if they can be used to boost the effectiveness of radiation therapy.

"Nanoparticle-based theranostics holds great promise, not only for treating pancreatic cancer, but for treating other forms of cancer as well," Halas said. "But successfully translating new technology like this from the lab to the clinic requires excellent research partnerships, like those we have at Baylor College of Medicine and MD Anderson."

The Laboratory for Nanophotonics at Rice was formed in 2004 with the mission to invent, understand, develop, simulate, control, optimize and apply nanoscale optical elements, components and systems. LANP features a strong interdisciplinary research program in three primary areas: metal-based plasmonics, nanoparticle-enhanced sensing and spectroscopy, and nanophotonic applications in biomedicine.

####

For more information, please click here

Contacts:
David Ruth
713-348-6327


Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project