Home > Press > Bayer MaterialScience and partners develop polyurethane nanofoams for thermal insulation
polyurethane nanofoams |
Abstract:
Double the insulating performance, reduced energy consumption
Bayer MaterialScience is working on the development of polyurethane nanofoams that could lead to a quantum leap in thermal insulation performance several years down the road. The company is focusing its efforts on microemulsions, which react under supercritical conditions (Principle of Supercritical Microemulsion Expansion, POSME) to form polyurethane rigid foams. The aim is to produce rigid foams with pore sizes of less than 150 nanometers in diameter.
"Nanofoams of this kind achieve twice the thermal insulation performance of today's polyurethane foams, meaning that they could, for example, significantly reduce the energy consumption of refrigeration appliances and, in turn, make a major contribution to reducing CO2 emissions. Furthermore, the walls of these appliances could be of thinner design, resulting in more storage space for refrigerated goods," explained Dr. Stefan Lindner, a polyurethane rigid foam specialist at Bayer MaterialScience.
The company is partnering on this research project with Prof. Reinhard Strey from the University of Cologne's Institute of Physical Chemistry, who has applied for a patent on the POSME process. As part of the collaboration, his working group is engaged in optimizing the characteristics of the microemulsions.
The thermal insulation performance of a polyurethane rigid foam depends chiefly on the size of the foam pores. The smaller the diameter, the lower the thermal conductivity and the better the insulating effect. Today's polyurethane rigid foams typically have pore sizes of roughly 150 micrometers, which exceeds the pore size of nanofoams planned for the future by a factor of approximately 1,000.
To synthesize a nanofoam using the POSME method, carbon dioxide (CO2) and the liquid polyurethane raw materials (polyol and isocyanate) are mixed with the help of special surfactants at a pressure of 200 bar to form a microemulsion consisting of nanometer-sized droplets filled with CO2 and encapsulated in surfactants. The pressure is then reduced, causing the CO2 to expand and the droplets to become bubbles still in the nanometer range. At the same time, the polyurethane raw materials react to form a 3D polymer network that is a rigid polyurethane foam.
"One of the trickiest challenges we face is to optimally coordinate the reaction of the polyurethane raw materials with the expansion of the CO2 bubbles by carefully fine-tuning the processing parameters so that nanopores of the targeted diameter result," explained Mr. Lindner. "It's no easy task," added Dr. Wolfgang Friederichs, head of Global Product Research at Bayer MaterialScience. "It is likely to take several more years before these challenges are overcome."
####
About Bayer MaterialScience
With 2009 sales of EUR 7.5 billion, Bayer MaterialScience is among the world’s largest polymer companies. Business activities are focused on the manufacture of high-tech polymer materials and the development of innovative solutions for products used in many areas of daily life. The main segments served are the automotive, electrical and electronics, construction and the sports and leisure industries. At the end of 2009, Bayer MaterialScience had 30 production sites and employed approximately 14,300 people around the globe. Bayer MaterialScience is a Bayer Group company.
For more information, please click here
Copyright © Bayer MaterialScience
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Food/Agriculture/Supplements
Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023
Night-time radiative warming using the atmosphere November 17th, 2023
DGIST and New Life Group launched a research project on "Functional beauty and health products using the latest nanotechnology" May 12th, 2023
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Home
Nanomaterials enable dual-mode heating and cooling device: Device could cut HVAC energy use by nearly 20% in the US December 2nd, 2020
Bosch Sensortec launches ideation community to foster and accelerate innovative IoT applications : Creativity hub for customers, partners, developers and makers February 18th, 2019
Iran Develops Water-Repellent Nano-Paint December 5th, 2018
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||