Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Unsung Hero – Berkeley researchers produce high-res model of Ndc80 in action

Overhead view of a subnanometer resolution reconstruction showing the microtubule-binding region of the Ndc80 complex (blue) attached to a microtubule(green). The part of the Ndc80 complex away from the microtubule is flexible and appears as scattered density in the reconstruction (red). (Image courtesy of Nogales group)
Overhead view of a subnanometer resolution reconstruction showing the microtubule-binding region of the Ndc80 complex (blue) attached to a microtubule(green). The part of the Ndc80 complex away from the microtubule is flexible and appears as scattered density in the reconstruction (red). (Image courtesy of Nogales group)

Abstract:
Unless you are in a field of study related to cell biology, you most likely have never heard of Ndc80. Yet this protein complex is essential to mitosis, the process by which a living cell separates its chromosomes and distributes them equally between its two daughter cells. Now, through a combination of cryo-electron microscopy and three-dimensional image reconstruction, a team of researchers with the Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley have produced a subnanometer resolution model of human Ndc80 that reveals how this unsung hero carries out its essential tasks.

Unsung Hero – Berkeley researchers produce high-res model of Ndc80 in action

Berkeley, CA | Posted on October 13th, 2010

"Our model suggests that Ndc80 oligomerizes on the surface of the microtubule via a segment of the protein that is regulated so that correct attachments are maintained and incorrect attachments are discarded," says biophysicist Eva Nogales who led this study.

"What we propose is that this oligomerization is an important part of the mechanism by which Ndc80 is able to utilize the energy of microtubule disassembly to move chromosomes towards the spindle poles during mitosis. This oligomerization will only happen for correctly attached microtubules"

Nogales holds joint appointments with Berkeley Lab's Life Sciences Divisions, UC Berkeley's Molecular and Cell Biology Department, and the Howard Hughes Medical Institute. An expert on electron microscopy and image analysis and an authority on the structure and dynamics of microtubules, she is the corresponding author of a paper published in the journal Nature titled, "The Ndc80 kinetochore complex forms oligomeric arrays along microtubules."

Co-authoring the paper with Nogales were Gregory Alushin, Vincent Ramey, Sebastiano Pasqualato, David Ball, Nikolaus Grigorieff and Andrea Musacchio.

Biological cells have a cytoskeleton that gives shape to membrane walls and other cellular structures and also controls the transportation of substances in and out of the cell. This cytoskeleton is spun from tiny fibers of tubulin protein called microtubles. During mitosis, microtubules disassemble and reform into spindles across which duplicate sets of chromosomes line up and migrate to opposite poles. After chromosome migration is complete, the microtubules disassemble and reform back into skeletal systems for the two new daughter cells.

Mistakes in the distribution of chromosomes from a parent cell to its daughter cells can lead to birth defects, cancer and other disorders. To ensure that each daughter cell receives a single copy of each chromosome, microtubule spindles dock with each chromosome's centromere - the central region where its two chromatids connect. The microtubule spindles connect with the centromere through a network of proteins called the kinetochore. Ndc80 is a key member of the kinetochore network and serves as a sort of "landing pad" for the microtubule-centromere connection. Although Ndc80's genetics and biochemistry have been extensively characterized, the mechanisms behind its activities have until now remained a mystery.

"Our first ever subnanometer model of Ndc80 shows that the protein complex binds the microtubule with a tubulin monomer repeat that is sensitive to tubulin conformation," Nogales says. "Furthermore, Ndc80 complexes self-associate along microtubule protofilaments via interactions that are mediated by the amino-terminal tail of the Ndc80 protein, which is the site of phospho-regulation by the Aurora B kinase."

The Aurora B kinase is an enzyme that ensures the correction of any improper microtubule-kinetochore attachments - faulty attachments will result in unequal segregation of the genetic material, such as both chromatides going to the same daughter cell. In their paper, Nogales and her co-authors contend that Ndc80's mode of interaction with the microtubule and its oligomerization provide a means by which the Aurora B kinase can regulate the stability of the load-bearing Ndc80-microtubule attachments.

"The Aurora B kinase corrects wrong microtubule-kinetochore attachments by phosphorylating proteins in the kinetochore," Nogales says. "Ndc80 is a major substrate of this regulation. Our work shows that if phosphorylated by Aurora B, attachments are not robust because there is no oligomerization of Ndc80s."

This research was supported by a grant from the National Institute of General Medical Sciences.

####

About Berkeley Lab
Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research for DOE’s Office of Science and is managed by the University of California. Visit our Website at www.lbl.gov/

For more information, please click here

Contacts:
Lynn Yarris
(510) 486-5375

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project