Home > News > Tunable, Stretchable Optical Materials
October 8th, 2010
Tunable, Stretchable Optical Materials
Abstract:
The field of metamaterials has yielded devices that seem to come from science fiction--invisibility cloaks, highly absorbent coatings for solar cells and ultra-high-resolution microscope lenses. Metamaterials are precisely tailored to manipulate electromagnetic waves--including visible light, microwaves, and other parts of the spectrum--in ways that no natural materials can.
With few exceptions, however, these materials work in a very limited range of wavelengths of light, making them impractical--an invisibility cloak isn't very useful if it only redirects light of one color but can be readily seen under others. Now researchers at Caltech have shown that by mechanically stretching an optical filter made from a metamaterial, they can dynamically change which wavelength of infrared light it responds to.
Source:
technologyreview.com
| Related News Press |
News and information
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Possible Futures
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Announcements
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Energy
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Solar/Photovoltaic
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||