Home > Press > Nano-Vehicle Acts As Cluster Bomb for Tumors
Abstract:
Chemotherapy, while an effective cancer treatment, also brings debilitating side effects such as nausea, liver toxicity, and a battered immune system. Now, a new way to deliver this life-saving therapy to cancer patients—getting it straight to the source of the disease—has been developed by Dan Peer and Rimona Margalit and their colleagues at Tel Aviv University.
Drs. Peer and Margalit have developed a nano-sized vehicle with the ability to deliver chemotherapy drugs directly into cancer cells while avoiding interaction with healthy cells, increasing the efficiency of chemotherapeutic treatment while reducing its side effects.
"The vehicle is very similar to a cluster bomb," explains Dr. Peer. Inside the nano-vehicle itself are nanoparticles loaded with chemotherapy drugs. When the delivery vehicle, comprising multiple nanoparticles, comes into contact with cancer cells, it releases the chemotherapeutic payload directly into the cell. According to Dr. Peer, the nanoparticle device can be used to treat many different types of cancer, including lung, blood, colon, breast, ovarian, pancreatic, and even several types of brain cancers. A paper describing their new nanoparticles and their use in targeting tumors appears in the journal Biomaterials.
The key to the drug delivery platform is hyaluronan, the molecule used to create the outer coating of this clustered nanoparticle. Hyaluronan is a sugar recognized by receptors on many types of cancer cells. "When the nano-vehicle interacts with the receptor on the cancerous cell, the receptor undergoes a structural change and the chemotherapy payload is released directly into the cancer cell," says Dr. Peer. The result, he explains, is a more to more focused chemotherapeutic treatment against the diseased cells.
Because the nanoparticle reacts only with cancer cells, the healthy cells that surround them remain untouched and unaffected by the therapy. The nano-vehicle itself, adds Dr. Peer, is made from naturally occurring lipid molecules that decompose in the body once the nanoparticles have performed their function, making the treatment potentially safer than current therapies. Tests with tumor-bearing mice showed that hyaluronan-coated nanoparticles filled with paclitaxel were more effective than either free paclitaxel or Abraxane—an albumin nanoparticle loaded with paclitaxel—at stopping tumor growth.
This work is detailed in a paper titled, "Paclitaxel-clusters coated with hyaluronan as selective tumor-targeted nanovectors." An abstract of this paper is available at the journal's Web site.
####
About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.
The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.
Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.
For more information, please click here
Copyright © NCI Alliance for Nanotechnology in Cancer
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Possible Futures
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||