Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Developments in Nanobiotechnology at UCSB Point to Medical Applications

Top row, three different RNA objects rendered from molecular computer models: from left, RNA antiprism composed of eight RNAs, a six-stranded RNA cube, and a 10-stranded RNA cube. Bottom row, the corresponding three-dimensional reconstructions of the objects obtained from cryo-electron microscopy. Credit: Cody Geary and Kirill A. Afonin
Top row, three different RNA objects rendered from molecular computer models: from left, RNA antiprism composed of eight RNAs, a six-stranded RNA cube, and a 10-stranded RNA cube. Bottom row, the corresponding three-dimensional reconstructions of the objects obtained from cryo-electron microscopy. Credit: Cody Geary and Kirill A. Afonin

Abstract:
Two new groundbreaking scientific papers by researchers at UC Santa Barbara demonstrate the synthesis of nanosize biological particles with the potential to fight cancer and other illnesses. The studies introduce new approaches that are considered "green" nanobiotechnology because they use no artificial compounds.

Developments in Nanobiotechnology at UCSB Point to Medical Applications

Santa Barbara, CA | Posted on September 3rd, 2010

Luc Jaeger, associate professor of chemistry and biochemistry at UCSB, explained that there is nothing short of a revolution going on in his field -- one that permeates all areas of biochemistry, especially his area of nanobiotechnology. The revolution involves understanding the role of RNA in cells.

"Considering the fact that up to 90 percent of the human genome is transcribed into RNA, it becomes clear that RNA is one of the most important biopolymers on which life is based," said Jaeger. "We are still far from understanding all the tremendous implications of RNA in living cells."

Jaeger's team is putting together complex three-dimensional RNA molecules -- nanosize polyhedrons that could be used to fight disease. The molecules self assemble into the new shapes. The work is funded by the National Institutes of Health (NIH), and there is a patent pending jointly between NIH and UCSB on the new designs.

"We are interested in using RNA assemblies to deliver silencing RNAs and therapeutic RNA aptamers to target cancer and other diseases," said Jaeger. "It is clear that RNA is involved in a huge number of key processes that are related to health issues."

Jaeger believes the RNA-based approaches to delivering new therapies in the body will be safer than those using artificial compounds that might have undesirable side effects down the line.

"By using RNA molecules as our primary medium, we are practicing ‘green' nanobiotechnology," explained Jaeger. "The research program developed in my lab at UCSB aims at contributing in a positive way to medicine and synthetic biology. We try to avoid any approaches that raise controversial bioethical issues in the public square. It's not an easy task, but I am convinced that it will pay off in the long run."

The more recent of the two scientific papers describing the new work -- "In vitro assembly of cubic RNA-based scaffolds designed in silicon" -- published online Monday, August 30, by Nature Nanotechnology. The earlier paper -- "A polyhedron made of tRNAs" by Severcan and colleagues -- was published online on July 18 by Nature Chemistry. The print edition of this article will be published in Nature Chemistry's September issue.

The second author on the Nature Chemistry paper is Cody Geary, a postdoctoral fellow in Jaeger's lab. Kirill A. Afonin, also a postdoctoral fellow in Jaeger's lab, is the first author on the Nature Nanotechnnology article.

Bruce Shapiro, a senior author on the Nature Nanotechnology article, is based at the National Cancer Institute in Frederick, Md. and is also funded by NIH. Jaeger and his team worked with Shapiro to develop a computerized approach for facilitating the design of self-assembling RNA strands. Further assistance came from the National Resource for Automated Molecular Microscopy located at Scripps Institute in La Jolla, Calif.

####

For more information, please click here

Contacts:
Gail Gallessich
805-893-7220

George Foulsham
805-893-3071

Copyright © UC Santa Barbara

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Chemistry

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Self Assembly

Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Environment

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

New gel could boost coral reef restoration: The substance, applied to surfaces as a coating, improved coral larvae settlement by up to 20 times in experiments compared to untreated surfaces May 16th, 2025

Onion-like nanoparticles found in aircraft exhaust May 14th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project