Home > News > Tiny Needles to Fight Cancer
September 1st, 2010
Tiny Needles to Fight Cancer
Abstract:
Using a novel laser-based technique, researchers at North Carolina State University have made arrays of tiny, hollow plastic needles that they used to insert fluorescent quantum-dot dyes into skin. Biomedical engineering professor Roger Narayan, who leads the research, says the microneedles and quantum dots, which have been tested on pigs, could be used to diagnose and treat skin cancer, and other chronic diseases.
Researchers have recently developed ways touse quantum dots--nanocrystals of semiconductors such as cadmium selenide and zinc sulfide that glow in different colors--to image tumors and deliver drugs into cells. The dots are much brighter and more stable inside the body than traditional organic dyes. "When combined with microneedles, [quantum dots] can offer a powerful method to probe the skin and other tissues," says Mark Prausnitz, a chemical and biomolecular engineering professor at the Georgia Institute of Technology. Prausnitz has made biodegradable polymer microneedles that dissolve into the skin in a few minutes.
Source:
technologyreview.com
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Possible Futures
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Nanomedicine
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |