Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Brookhaven Lab Physicist William Sampson Receives IEEE Award for Applied Superconductivity Research

William Sampson
William Sampson

Abstract:
William Sampson, a senior physicist at the U.S. Department of Energy's Brookhaven National Laboratory, has received the IEEE Council on Superconductivity Award for Significant and Sustained Contributions in the Field of Applied Superconductivity.

Brookhaven Lab Physicist William Sampson Receives IEEE Award for Applied Superconductivity Research

Upton, NY | Posted on August 13th, 2010

For 48 years, Sampson has helped to design and build superconducting magnets that keep particle beams circulating in accelerators, such as Brookhaven Lab's Relativistic Heavy Ion Collider (RHIC). He received the award, which consists of a plaque; a medallion made of niobium, a superconducting material; and $5,000, on August 2, at the Applied Superconductivity Conference in Washington, D.C.

"I'm glad that my contributions to the development of superconducting magnets are being recognized," Sampson said. "I hope to continue to contribute to the field for many years to come."

Superconducting magnets are made of conductors that can carry electric current without power dissipation at very low temperatures. In particular, the IEEE honored Sampson for his contributions to the field of large-scale superconductivity. In the 1960s, he built some of the first superconducting magnets to exceed 10 Tesla, 200,000 times the earth's magnetic field.

Sampson also made early models of dipole and quadrupole magnets, used for bending and focusing beams of particles in accelerators. Accelerators around the world, including RHIC and the Large Hadron Collider (LHC) at CERN, the European Organization for Nuclear Research, have benefited from this pioneering work.

In the 1970s, Sampson made magnets called "wigglers" for the NSLS, which began operating in 1982. Annually, about 2,300 scientists use x-rays, infrared and ultraviolet light at the synchrotron to study materials as diverse as computer chips and viruses. Wiggler magnets force the electron beam in a light source to move, or wiggle, due to high local magnetic fields, giving rise to increased energy in the emitted light. This type of magnet will also be used in the Laboratory's NSLS-II, a light source 10,000 times brighter than the NSLS, now under construction and due to be in operation by 2015.

Sampson has also worked on high-temperature superconducting magnets that can operate in high radiation environments, such as the future U.S. Department of Energy-funded Facility for Rare Isotope Beams (FRIB), a nuclear physics facility that will be operated by Michigan State University. FRIB is expected to provide scientists with information about the properties of rare isotopes - short-lived nuclei not normally found on earth - that should help them to better understand the origin of elements and evolution of the cosmos.

Currently, Sampson is developing very high-field superconducting magnets that may be used in building a high-energy muon collider. A team of physicists is examining the feasibility of such a collider, which would enable scientists to make detailed studies of particles found at the LHC.

After earning a Ph.D. in physics from the University of Toronto in 1962, Sampson joined Brookhaven Lab as an assistant physicist. He was promoted to physicist in 1967 and to senior physicist in 1977.

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

For more information, please click here

Contacts:
Diane Greenberg
(631) 344-2347

Peter Genzer
(631) 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Researchers uncover strong light-matter interactions in quantum spin liquids: Groundbreaking experiment supported by Rice researcher reveals new insights into a mysterious phase of quantum matter December 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project