Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Novel bee venom derivative forms a nanoparticle 'smart bomb' to target cancer cells

Abstract:
New research in the FASEB Journal shows that a peptide derived from bee venom can deliver liposomes bearing drugs or diagnostic dyes to specific cells or tissues

Novel bee venom derivative forms a nanoparticle 'smart bomb' to target cancer cells

Bethesda, MD | Posted on August 2nd, 2010

The next time you are stung by a bee, here's some consolation: a toxic protein in bee venom, when altered, significantly improves the effectiveness liposome-encapsulated drugs or dyes, such as those already used to treat or diagnose cancer. This research, described in the August 2010 print issue of the FASEB Journal (www.fasebj.org), shows how modified melittin may revolutionize treatments for cancer and perhaps other conditions, such as arthritis, cardiovascular disease, and serious infections.

"This type of transporter agent may help in the design and use of more personalized treatment regimens that can be selectively targeted to tumors and other diseases," said Samuel A. Wickline, Ph.D., a researcher involved in the work from the Consortium for Translational Research in Advanced Imaging and Nanomedicine (C-TRAIN) at the Washington University School of Medicine in St. Louis, Missouri.

To make this discovery, Wickline and colleagues designed and tested variations of the melittin protein to derive a stable compound that could be inserted into liposomal nanoparticles and into living cells without changing or harming them. They then tested the ability of this protein, or "transporter agent," to attach to different therapeutic compounds and enhance drug therapy without causing harmful side effects. In addition, their results suggest that the base compound which is used to create the transporter agent may improve tumor therapy as well.

"Our journal is abuzz in a hive of bee-related discoveries. Just last month, we published research showing for the first time how honey kills bacteria. This month, the Wickline study shows how bee venom peptides can form "smart bombs" that deliver liposomal nanoparticles directly to their target, without collateral damage," said Gerald Weissmann, M.D., Editor-in-Chief of the FASEB Journal.

Receive monthly highlights from the FASEB Journal by e-mail. Sign up at www.faseb.org/fjupdate.aspx. The FASEB Journal is published by the Federation of the American Societies for Experimental Biology (FASEB). The journal has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century and is the most cited biology journal worldwide according to the Institute for Scientific Information.

Details: Hua Pan, Jacob W. Myerson, Olena Ivashyna, Neelesh R. Soman, Jon N. Marsh, Joshua L. Hood, Gregory M. Lanza, Paul H. Schlesinger, and Samuel A. Wickline. Lipid membrane editing with peptide cargo linkers in cells and synthetic nanostructures. FASEB J. 2010 24: 2928-2937. doi: 10.1096/fj.09-153130 www.fasebj.org/cgi/content/abstract/24/8/2928

####

About Federation of American Societies for Experimental Biology
FASEB comprises 23 societies with more than 100,000 members, making it the largest coalition of biomedical research associations in the United States. FASEB enhances the ability of scientists and engineers to improve—through their research—the health, well-being and productivity of all people. FASEB's mission is to advance health and welfare by promoting progress and education in biological and biomedical sciences through service to our member societies and collaborative advocacy.

For more information, please click here

Contacts:
Cody Mooneyhan

301-634-7104

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project