Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Fly Eye Paves the Way for Manufacturing Biomimetic Surfaces

Close up of blowfly eye. Photo Credit: Akhlesh Lakhtakia, Penn State
Close up of blowfly eye. Photo Credit: Akhlesh Lakhtakia, Penn State

Abstract:
Rows of tiny raised blowfly corneas may be the key to easy manufacturing of biomimetic surfaces, surfaces that mimic the properties of biological tissues, according to a team of Penn State researchers.

Fly Eye Paves the Way for Manufacturing Biomimetic Surfaces

University Park, PA | Posted on July 28th, 2010

"Bioreplication began about 2001 or 2002," said Akhlesh Lakhtakia, Godfrey Binder Professor of Engineering Science and Mechanics. "All the techniques currently available are not conducive to mass replications. In many cases you can make as many replicas as you want, but you need an insect for each replication. This is not good for industrial purposes."

Lakhtakia, working with Drew Patrick Pulsifer, graduate student in engineering science and mechanics; Carlo G. Pantano, distinguished professor of materials science and engineering and director of Penn State's Materials Research Institute; and Raúl José Martín-Palma, professor of applied physics, Universidad Autónomia de Madrid, Spain, developed a method to create macroscale molds or dies that retain nanoscale features.

"We needed an object large enough to manipulate that still had nanoscale features," said Lakhtakia.

The researchers chose blowfly eyes because they have potential application in the manufacture of solar cells. Blowflies have compound eyes that are roughly hemispherical; but within that half sphere, the surface is covered by macroscale hexagonal eyes with nanoscale features.

"These eyes are perfect for making solar cells because they would collect more sunlight from a larger area rather than just light that falls directly on a flat surface," said Lakhtakia.

However, in order to work in a manufactured product, the surface needs to retain the overall design in sufficient detail.

The researchers fixed the fly corneas on a glass substrate and filled the back of the corneas with polydimethylsiloxane, a silicone-based organic polymer, so that the metal covering they apply would not seep behind the eyes. They then deposited nickel on the surface using a modified form of the conformal-evaporated-film-by-rotation technique. In this technique, the researchers thermally evaporate the material that forms the coating in a vacuum chamber. The object receiving the coating is fixed to a holder and rotated about once every two seconds.

The researchers used arrays of nine blowfly eyes coated with 250 nanometers of nickel. This initial template was then electroformed -- a method of electroplating -- to deposit nickel on the back to create a master template half a millimeter thick. The thickness of the master template can be thicker.

"Polymer replicas produced . . . by casting did faithfully reproduce features of a few micrometers and larger in dimensions," the researchers reported in the online edition of Bioinspiration & Biomimetics.

The master template can be used either as a die to stamp the pattern or as a mold. The intention is to use the master die/mold to produce not only daughter dies/molds, but to tile the templates so that they can imprint large areas. The researchers will probably expand their template to include 30 blowfly corneas.

"One of the nice things about a conformal coating like this is, it becomes nanograined," said Lakhtakia. "The surface of the die becomes very smooth so the polymer will probably not stick."

Many biological surfaces exist that could create manufacture surfaces for a variety of applications. The researchers are currently looking at butterfly wings to understand how the surfaces create colors without pigment.

"Interestingly, the emerald ash borer, an insect that has recently become a problem in Pennsylvania, mates by color," said Lakhtakia. "Would lures made from templates of the ash borer skin attract males?"

The paper, "Mass Fabrication Technique For Polymeric Replicas Of Arrays Of Insect
Corneas," Bioinspiration & Biomimetics is found at stacks.iop.org/1748-3190/5/036001.

####

For more information, please click here

Contacts:
Dr. Lakhtakia
814-863-4319

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Solar/Photovoltaic

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project