Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > How a MacGyver of the Semiconductor Industry Plans to Rescue Nanosys

July 23rd, 2010

How a MacGyver of the Semiconductor Industry Plans to Rescue Nanosys

Abstract:
Jason Hartlove has a name and a rakish mug worthy of a soap-opera star, a resume that any Silicon Valley engineer would envy, and a bit of swagger as a turnaround CEO. He co-invented the optical mouse at Hewlett-Packard, ran a 3,000-employee manufacturing operation for HP spinoff Agilent in Malaysia, and set South Korea's struggling MagnaChip Semiconductor on its current path to an IPO. "One of my investors said this—so I won't claim it for myself—but I am a technology MacGyver," Hartlove says. "If you give me some piece of technology, I can really figure out what to do with it."

But at Palo Alto, CA-based Nanosys, where he took over as CEO in October 2008, Hartlove may be facing his biggest challenge yet. With an impressive portfolio of patents based on work at MIT, Harvard, UC Berkeley, and other institutions, the nine-year-old company has repeatedly been described as one of the most promising in a batch of nanotechnology startups that emerged around the turn of the millennium. In its early years, it investigated areas like solar cells and display electronics where it was thought that nano-engineered materials could lead to higher power output or greater efficiencies. But real commercial applications for nanotechnology insights have been slow to emerge, and Nanosys has yet to bring a single product all the way to the market (the first is set to appear in the fourth quarter of this year, if all goes according to plan).

Source:
xconomy.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Energy

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project