Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > News > How a MacGyver of the Semiconductor Industry Plans to Rescue Nanosys

July 23rd, 2010

How a MacGyver of the Semiconductor Industry Plans to Rescue Nanosys

Abstract:
Jason Hartlove has a name and a rakish mug worthy of a soap-opera star, a resume that any Silicon Valley engineer would envy, and a bit of swagger as a turnaround CEO. He co-invented the optical mouse at Hewlett-Packard, ran a 3,000-employee manufacturing operation for HP spinoff Agilent in Malaysia, and set South Korea's struggling MagnaChip Semiconductor on its current path to an IPO. "One of my investors said this—so I won't claim it for myself—but I am a technology MacGyver," Hartlove says. "If you give me some piece of technology, I can really figure out what to do with it."

But at Palo Alto, CA-based Nanosys, where he took over as CEO in October 2008, Hartlove may be facing his biggest challenge yet. With an impressive portfolio of patents based on work at MIT, Harvard, UC Berkeley, and other institutions, the nine-year-old company has repeatedly been described as one of the most promising in a batch of nanotechnology startups that emerged around the turn of the millennium. In its early years, it investigated areas like solar cells and display electronics where it was thought that nano-engineered materials could lead to higher power output or greater efficiencies. But real commercial applications for nanotechnology insights have been slow to emerge, and Nanosys has yet to bring a single product all the way to the market (the first is set to appear in the fourth quarter of this year, if all goes according to plan).

Source:
xconomy.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project