Home > News > How a MacGyver of the Semiconductor Industry Plans to Rescue Nanosys
July 23rd, 2010
How a MacGyver of the Semiconductor Industry Plans to Rescue Nanosys
Abstract:
Jason Hartlove has a name and a rakish mug worthy of a soap-opera star, a resume that any Silicon Valley engineer would envy, and a bit of swagger as a turnaround CEO. He co-invented the optical mouse at Hewlett-Packard, ran a 3,000-employee manufacturing operation for HP spinoff Agilent in Malaysia, and set South Korea's struggling MagnaChip Semiconductor on its current path to an IPO. "One of my investors said this—so I won't claim it for myself—but I am a technology MacGyver," Hartlove says. "If you give me some piece of technology, I can really figure out what to do with it."
But at Palo Alto, CA-based Nanosys, where he took over as CEO in October 2008, Hartlove may be facing his biggest challenge yet. With an impressive portfolio of patents based on work at MIT, Harvard, UC Berkeley, and other institutions, the nine-year-old company has repeatedly been described as one of the most promising in a batch of nanotechnology startups that emerged around the turn of the millennium. In its early years, it investigated areas like solar cells and display electronics where it was thought that nano-engineered materials could lead to higher power output or greater efficiencies. But real commercial applications for nanotechnology insights have been slow to emerge, and Nanosys has yet to bring a single product all the way to the market (the first is set to appear in the fourth quarter of this year, if all goes according to plan).
Source:
xconomy.com
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||