Home > Press > Collaboration Leads to Simpler Method for Building Varieties of Nanocrystal Superlattices
Electron microscopes show the preparation of BNSL membranes on the left, with higher magnification shown on the right. (Credit: University of Pennsylvania) |
Abstract:
Collaboration by chemists, physicists and materials scientists at the University of Pennsylvania has created a simple and inexpensive method to rapidly grow centimeter-scale membranes of binary nanocrystal superlattices, or BNSLs, by crystallizing a mixture of nanocrystals on a liquid surface.
The study demonstrates a new and spontaneous way to grow long-range-ordered BNSL membranes with rigorous control of nanocrystal size, shape and concentration by combining two types of nanocrystals and assembling them during a drying stage at the surface of a liquid under normal conditions.
The method overcomes several limitations of the existing assembly strategies and produces large, free-standing membranes that can be transferred to any desired substrate such as silicon wafers, glass slides and plastic substrates, allowing the nanocryatalline films to be introduced at any stage in the device fabrication process.
The team demonstrated the potential for integrating these novel materials by growing millimeter-scale superlattice membranes containing iron oxide nanocrystals of two different sizes and incorporating the membranes into magnetoresistive devices. Measurements showed that the magnetoresistance of the resulting device was dependent on the structure of the BNSL and therefore controllable.
The physical properties intrinsic in these nanocrystals -- nanometer sized crystalline building blocks — offer a modern twist on the studies of interfacial assembly that reach as far back as Penn founder Benjamin Franklin and his studies of oil spreading on water in the 1770s.
Single and multi-component nanocrystal films are already under intense investigation by researchers as enablers of novel optical technologies that range from low-cost solar cells, light-emitting diodes and photo detectors and also in electronic systems that include field-effect transistors and solid-state thermoelectric coolers and generators and magnetic technologies that include magnetic recording materials and magnetic sensors and even as tailored electrocatalytic and photocatalytic films.
Co-assembly of two types of nanocrytals into BNSLs provides a low-cost, modular route to program the self assembly of materials with a precisely controlled combinations of properties. Advances in these complex interfacial assemblies and improvements in the transfer of single-component nanocrystal membranes in the past few years have heightened anticipation that this control could be extended to much more complex systems.
This Penn study establishes a route to free-standing large-area BNSLs membranes with the added ability to laminate them on any arbitrary substrate.
"Fundamentally, growing BNSLs on a liquid surface will shed light on the mechanisms of multi-component nanocrystal assembly, which are critical to new concepts in self-assembly based nanomanufacturing," said Christopher B. Murray, the Richard Perry University Professor of Chemistry and Material Science and Engineering at Penn.
The research, funded by the U.S. Army Research Office and a National Science Foundation Materials Research Science and Engineering Centers Award, is published in this week's Nature.
Existing strategies for growing BNSLs involve a more complex process of evaporating a two-nanocrystal solution on a solid substrate under carefully regulated temperature and pressure that influence BNSL formation. The method suffers from several limitations, most notably a limited choice of substrate, nucleation of irregular micrometer-sized, isolated islands of BNSLs on the substrates and an inability to transfer them once formed.
"Given the fact that this novel assembly strategy is general for different nanocrystal combinations, we anticipate that membranes of quasicrystalline BNSLs and ternary nanocrystal superlattices will also be grown by this method, greatly expanding the systems that can be explored" Murray said. "Our dream is to program the organization of materials on all lengths scales for nanometers to millimeters combining the desirable physical properties multiple nanoscale systems. Fundamentally we are focused on identifying, understanding and optimizing new synergistic interactions in nanomaterials and in exploiting these emergent properties in new devices and systems."
This interdisciplinary study was conducted by Murray and Angang Dong in the Department of Chemistry in the School of Arts and Sciences and the Department of Materials Science and Engineering in the School of Engineering and Applied Science, Jun Chen of Materials Science and Engineering and Patrick M. Vora and James M. Kikkawa of the Department of Physics and Astronomy in SAS.
Additional information on research funded by the National Science Foundation Materials Research Science and Engineering Centers is available at www.mrsec.org
####
For more information, please click here
Contacts:
Media Contact:
Jordan Reese
215-573-6604
Copyright © University of Pennsylvania
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Self Assembly
Diamond glitter: A play of colors with artificial DNA crystals May 17th, 2024
Liquid crystal templated chiral nanomaterials October 14th, 2022
Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022
Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||