Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoparticles Assembled Inside Tumors Trap Drugs and Imaging Agents

Abstract:
Virtually every study that uses nanoparticles to deliver drugs and imaging agents to tumors starts by loading the clinical payload into the nanoparticle and then injecting the resulting delivery agent into the body.

Nanoparticles Assembled Inside Tumors Trap Drugs and Imaging Agents

Bethesda, MD | Posted on July 19th, 2010

While effective at reducing clearance from the body and improving drug or imaging agent retention in a tumor, the nanoparticles do move relatively slowly from the circulation into the heart of the tumor.

Now, a pair of investigators from the University of Toronto have shown that a system that assembles itself into a nanoparticle, complete with drug or imaging agent, once it gets inside a tumor can dramatically increase the rate at which clinically important molecules get into tumors and still trap those molecules inside the tumor. Warren Chan and postdoctoral fellow Steven Perrault conducted the study and published the results of their work in the Proceedings of the National Academy of Sciences.

The goal of this project was to develop a nanoparticle system that would combine the fast "in" rate for small molecule drugs or imaging agents with the glacial "out" rate associated with nanoparticles. This would allow as much drug or imaging agent to get into and stay in tumors while allowing the body to excrete rapidly any of the active material that remained in the blood stream or that happened to get inside of non-targeted tissue. To create a system that would marry these two seemingly incompatible characteristics, Drs. Chan and Perrault first inject 30 nanometer diameter gold nanoparticles coated with a biotin terminated polymer; the polmer keeps the particles from sticking to one another and the biotin allows for later conjugation to imaging agents or drugs. Over the course of the next 24 hours, many of the gold nanoparticles accumulate in tumors, while the rest are excreted from the body.

Next, the researchers inject the active substance linked to streptavidin, a molecule that binds tightly and specifically to biotin. This small molecule construct readily enters tumors, as well as other tissues, but once in the tumors it sticks in an almost irreversible manner to the gold nanoparticles, greatly reducing the rate at which the active molecule will exit the tumor.

Using a fluorescent dye as the active molecule linked to streptavidin, Drs. Chan and Perrault were able to track the kinetics of drug accumulation in tumor. The results were remarkable: the active molecule accumulated nearly 200-fold increase in the rate at which drug accumulated in tumors compared to animals that did not receive the biotin-coated gold nanoparticles. In addition, pretreated tumors accumulated five times more of the fluorescent probe than did the control animals.

This work is detailed in a paper titled, "In vivo assembly of nanoparticle components to improve targeted cancer imaging." An abstract of this paper is available at the journal's Web site.

View abstract dx.doi.org/doi:10.1073/pnas.1001367107

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Possible Futures

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Nanobiotechnology

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project