Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > SolRayo Begins Work on STTR Program Grant

Abstract:
Enable IPC's SolRayo Begins Work on STTR Program Grant From the National Science Foundation (NSF) SBIR/STTR Program

SolRayo Begins Work on STTR Program Grant

Madison, WI | Posted on July 13th, 2010

Enable IPC Corporation (Pinksheets: EIPC) announced today that its subsidiary, SolRayo, has commenced work on its recently awarded STTR grant from the National Science Foundation (NSF) SBIR/STTR Program. The work will continue through June 30, 2011 and is being performed under the guidance of SolRayo's Director of Battery R&D, Dr. Walter Zeltner and in collaboration with the University of Wisconsin. SolRayo is developing new nanoparticle-based materials for commercial use in various renewable energy, industrial, consumer and automotive applications. The objective of the awarded grant is to address an issue concerning the degradation of performance of certain lithium batteries, particularly in high temperature applications.

SolRayo CEO Dr. Mark Daugherty said, "Our research into this technology suggests that battery life can be significantly expanded by using a simple, inexpensive nanoparticle coating process we have been developing. This could mean a large market opportunity for us in a number of areas, most particularly in military, remote power and transportation applications."

Kevin Leonard, Chief Technology Officer at SolRayo, commented, "Our initial research shows that our process inhibits the degradation of battery cathode materials, especially at higher operating temperatures. This means that a battery's life could be extended significantly by applying an inexpensive, nano-based coating to one of the battery's key components."

Disclaimer

SolRayo's research results are based upon work supported by the National Science Foundation Small Business Technology Transfer (STTR) Program under Proposal/Grant No. 1010409. Any opinions, findings, and conclusions or recommendations expressed in this press release are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Forward-Looking Statements

This release may contain forward-looking statements, such as "could," "suggests" and similar terminology that are made pursuant to the safe harbor provisions of the Private Securities Reform Act of 1995. Forward-looking statements involve known and unknown risks and uncertainties, which may cause a company's actual results in the future to differ materially from forecasted results. These risks and uncertainties include, among other things, the ability to secure additional financing for the company, changing economic conditions, business conditions, and the risks inherent in the operations of a company.

####

About SolRayo
SolRayo, Inc. (http://www.solrayo.com) is a Madison, Wisconsin-based company focused on developing new nanoparticle based materials for use in various renewable energy, industrial, consumer, and automotive applications. The Company is currently working to commercialize an ultracapacitor technology licensed from the University of Wisconsin. In addition to its materials research and development work, the Company introduced its potentiostat/galvanostat equipment products in January 2010. SolRayo is a subsidiary of Enable IPC Corporation.

For more information, please click here

Contacts:
Rich Kaiser
(888) 391-1196, ext. 106
or (800) 631-8127

Copyright © Enable IPC Corporation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Possible Futures

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project