Home > News > A Simpler Way to Spy on Rogue Molecules
July 12th, 2010
A Simpler Way to Spy on Rogue Molecules
Abstract:
Individual proteins play a key role in the development of a host of diseases, including Alzheimer's, Parkinson's, and Huntington's. A number of new imaging techniques can reveal the behavior of single biomolecules, but these approaches are tricky and expensive. Now a new technique, developed at Harvard University, could provide a cheaper and simpler way to measure and track molecules as they move freely through a solution.
Proteins are small--around two nanometers on average--and they flit around quickly, making them difficult to track under a microscope. A popular way to observe interactions between two proteins is to tether one to a surface and wait until another molecule comes by and interacts. The problem with this approach, explains Adam Cohen, assistant professor of chemistry at Harvard University and a TR35 Award winner in 2007, is that proteins behave differently when they are attached to a surface, since they have less freedom to move.
Source:
technologyreview.com
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Nanomedicine
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Tools
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
Turning up the signal November 8th, 2024
Nanobiotechnology
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |