Home > Press > Magnets trump metallics
Rice University Professor Junichiro Kono, standing, and graduate student Thomas Searles set out to study interactions between magnetic fields and electrically charged particles and found that strong magnets can stop the flow of electrons through metallic single-walled carbon nanotubes. (Credit Jeff Fitlow/Rice University) |
Abstract:
Magnetic fields can block conductivity of carbon nanotubes
Metallic carbon nanotubes show great promise for applications from microelectronics to power lines because of their ballistic transmission of electrons. But who knew magnets could stop those electrons in their tracks?
Rice physicist Junichiro Kono and his team have been studying the Aharonov-Bohm effect -- the interaction between electrically charged particles and magnetic fields -- and how it relates to carbon nanotubes. While doing so, they came to the unexpected conclusion that magnetic fields can turn highly conductive nanotubes into semiconductors.
Their findings are published online this month in Physical Review Letters.
"When you apply a magnetic field, a band gap opens up and it becomes an insulator," said Kono, a Rice professor in electrical and computer engineering and in physics and astronomy. "You are changing a conductor into a semiconductor, and you can switch between the two. So this experiment explores both an important aspect of the results of the Aharonov-Bohm effect and the novel magnetic properties of carbon nanotubes."
Kono, graduate student Thomas Searles and their colleagues at the National Institute of Standards and Technology (NIST) and in Japan successfully measured the magnetic susceptibility of a variety of nanotubes for the first time; they confirmed that metallics are far more susceptible to magnetic fields than semiconducting nanotubes, depending upon the orientation and strength of the field.
Single-walled nanotubes (SWNTs) -- rolled-up sheets of graphene -- would all look the same to the naked eye if one could see them. But a closer look reveals nanotubes come in many forms, or chiralities, depending on how they're rolled. Some are semiconducting; some are highly conductive metallics. The gold standard for conductivity is the armchair nanotube, so-called because the open ends form a pattern that looks like armchairs.
Not just any magnet would do for their experiments. Kono and Searles traveled to the Tsukuba Magnet Laboratory at the National Institute for Materials Science (NIMS) in Japan, where the world's second-largest electromagnet was used to tease a refined ensemble of 10 chiralities of SWNTs, some metallic and some semiconducting, into giving up their secrets.
By ramping the big magnet up to 35 tesla, they found that the nanotubes would begin to align themselves in parallel and that the metallics reacted far more strongly than the semiconductors. (For comparison, the average MRI machine for medical imaging has electromagnets rated at 0.5 to 3 tesla.) Spectroscopic analysis confirmed the metallics, particularly armchair nanotubes, were two to four times more susceptible to the magnetic field than semiconductors and that each chirality reacted differently.
The nanotubes were all about 0.7 to 0.8 nanometers (or billionths of a meter) wide and 500 nanometers long, so variations in size were not a factor in results by Searles. He spent a week last fall running experiments at the Tsukuba facility's "hybrid," a large-bore superconducting magnet that contains a water-cooled resistive magnet.
Kono said the work would continue on purified batches of nanotubes produced by ultracentrifugation at Rice. That should yield more specific information about their susceptibility to magnetic fields, though he suspects the effect should be even stronger in longer metallics. "This work clearly shows that metallic tubes and semiconducting tubes are different, but now that we have metallic-enriched samples, we can compare different chiralities within the metallic family," he said.
Co-authors of the paper include Yasutaka Imanaka and Tadashi Takamasu of NIMS, Tsukuba, Japan; Hiroshi Ajiki of the Photon Pioneers Center at Osaka University, Japan; and Jeffrey Fagan and Erik Hobbie, researchers at NIST, Gaithersburg, Md.
Searles conducted the majority of the research during a visit to NIMS supported in part by a National Science Foundation Partnerships for International Research and Education grant to Kono and his co-principal investigators. Other funding came from the Department of Energy Office of Basic Energy Sciences, the Robert A. Welch Foundation and the Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.
Read the abstract here: prl.aps.org/abstract/PRL/v105/i1/e017403
####
For more information, please click here
Contacts:
David Ruth
Director of National Media Relations
Rice University
Houston, Texas
(W) 713-348-6327
(C) 612-702-9473
Copyright © Rice University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Academic/Education
Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024
Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023
Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||